
AdaWeb Application Programmer’s
Guide

STEPHANE CARREZ

2022-08-02



Ada Web Application Programmer’s Guide 2022-08-02

Contents

1 Introduction 8
1.1 System Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 General Purpose Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Functional Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Installation 11
2.1 Before Building . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Getting the sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Development Host Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Ubuntu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 FreeBSD 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.3 Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Ada Web Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6 Build . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.7 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.8 Using . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Tutorial 17
3.1 The review web application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Setting up the project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.1 Project creation with Dynamo . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.2 Creating the reviewmodule with Dynamo . . . . . . . . . . . . . . . . . . . . 20

3.3 Designing the data model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.1 ArgoUML setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.2 Modelize the domain model in UML . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.3 Adding relations in the UMLmodel . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.4 Makefile setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.5 Generating the Adamodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.6 Creating the database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Adding a creation form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4.1 Adding pages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4.2 The create review form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4.3 How it works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4.4 The Review_Bean type declaration . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4.5 The Review_Bean implementation . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4.6 The Review_Bean creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Stephane Carrez 2

https://github.com/stcarrez/dynamo
https://github.com/stcarrez/dynamo


Ada Web Application Programmer’s Guide 2022-08-02

3.4.7 Navigation rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.5 Creating the module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5.1 Adding the module operations . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.5.2 Saving our review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.5.3 Setting up the permissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.6 Using database queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.6.1 Adding database queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.6.2 Implementing the review list bean . . . . . . . . . . . . . . . . . . . . . . . . 39
3.6.3 Review list bean creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.6.4 Review list bean declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.6.5 Listing the reviews: the XHTML facelet presentation file . . . . . . . . . . . . . 42
3.6.6 Understanding the request flow . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 AWA Core 45
4.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3 AWA Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3.1 Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3.2 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4 AWA Permissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4.1 Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4.2 Checking for a permission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4.3 Configuring a permission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.4.4 Adding a permission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.4.5 Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.4.6 Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.4.7 Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.5 AWA Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.5.1 Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.5.2 Posting an event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.5.3 Receiving an event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.5.4 Event queues and dispatchers . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.5.5 Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.6 AWA Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.6.1 Command Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.6.2 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Stephane Carrez 3



Ada Web Application Programmer’s Guide 2022-08-02

5 Users Module 59
5.1 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2 OAuth Authentication Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.3 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.4 Ada Beans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.5 Data model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6 Jobs Module 65
6.1 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.2 Writing a job . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.3 Registering a job . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.4 Scheduling a job . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.5 Checking for job completion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.6 Job Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.7 Ada Beans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.8 Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7 Mail Module 69
7.1 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.2 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.3 Sending an email . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.4 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.4.1 Mail Recipients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.4.2 Mail Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.4.3 Mail Attachments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.5 Ada Beans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

8 Workspaces Module 73
8.1 Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

8.1.1 invite-user . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
8.1.2 accept-invitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

8.2 Ada Beans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
8.2.1 Beans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
8.2.2 Permissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
8.2.3 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

8.3 Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

9 Storages Module 76
9.1 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Stephane Carrez 4



Ada Web Application Programmer’s Guide 2022-08-02

9.2 Permissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
9.3 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
9.4 Creating a storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
9.5 Getting the data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
9.6 Local file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
9.7 Storage Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
9.8 Store Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

9.8.1 Database store . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
9.8.2 File System store . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

9.9 Ada Beans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
9.10 Storage Servlet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
9.11 Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
9.12 Data model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

10 Images Module 82
10.1 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
10.2 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
10.3 Ada Beans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
10.4 Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
10.5 Data model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

11 Wikis Module 86
11.1 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
11.2 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
11.3 Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
11.4 Ada Beans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
11.5 Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
11.6 Data model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

12 Blogs Module 93
12.1 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
12.2 Ada Beans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
12.3 Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
12.4 Data model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

13 Counters Module 99
13.1 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
13.2 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
13.3 Counter Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Stephane Carrez 5



Ada Web Application Programmer’s Guide 2022-08-02

13.4 Incrementing the counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
13.5 Ada Bean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
13.6 HTML components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
13.7 Data model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

14 Votes Module 105
14.1 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
14.2 Ada Beans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
14.3 Javascript integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
14.4 Data model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

15 Tags Module 109
15.1 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
15.2 Ada Beans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

15.2.1 Tag_List_Bean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
15.2.2 Tag_Search_Bean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
15.2.3 Tag_Info_List_Bean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

15.3 HTML components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
15.3.1 Displaying a list of tags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
15.3.2 Tag editing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
15.3.3 Tag cloud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

15.4 Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
15.5 Data model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

16 Comments Module 114
16.1 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
16.2 Ada Beans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

16.2.1 Comment_List_Bean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
16.3 Data model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

17 Settings Module 117
17.1 Getting a user setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
17.2 Saving a user setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
17.3 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
17.4 Data model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

18 Setup Application 119
18.1 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
18.2 Setup Procedure Instantiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Stephane Carrez 6



Ada Web Application Programmer’s Guide 2022-08-02

18.3 Setup Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

19 Tips 121
19.1 UI Presentation Tips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

19.1.1 Adding a simple page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
19.1.2 Add Open Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
19.1.3 Formatting dates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

19.2 Configuration Tips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
19.2.1 Adding a permission on user creation . . . . . . . . . . . . . . . . . . . . . . . 122
19.2.2 Secure configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

19.3 Trouble shotting Tips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
19.3.1 No AWA service context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Stephane Carrez 7



Ada Web Application Programmer’s Guide 2022-08-02

1 Introduction

Ada Web Application is a framework to build a Web Application in Ada 2012. The framework provides
several ready to use and extendablemodules that are common tomanyweb applications. This includes
the login, authentication, users, permissions, managing comments, tags, votes, documents, images. It
provides a complete blog, question and answers and a wiki module.

AWA simplifies the Web Application development by taking care of user management with Google+,
Facebook authentication and by providing the foundations on top of which you can construct your own
application. AWA provides a powerful permission management that gives flexibility to applications to
grant access and protect your user’s resources.

A typical architecture of an AWA application is represented by the picture below:

Figure 1: AdaWeb Application Architecture

Because your application sits on top of AWA framework, it benefits of all the functionalities that AWA
uses for its implementation:

• The Web server is built on top of the Ada Web Server library,
• The presentation layer is using Ada Server Faces which allows to use the same design pattern as
the Java Server Faces,

• The database access is provided by Ada Database Objects

Apart from this architecture, the Dynamo tool is used to generate code automatically and help starting

Stephane Carrez 8

https://github.com/stcarrez/ada-asf
https://github.com/stcarrez/ada-ado
https://github.com/stcarrez/dynamo


Ada Web Application Programmer’s Guide 2022-08-02

the project quickly.

AWA is composed of several configuration components also called modules or plugins. Components
are classified in three categories:

• System components,
• General purpose components,
• Functional components.

Figure 2: AWA Features

1.1 System Components

The System Components represent the core components onto which all other components are based.
These component don’t provide any real functionality for a final user but they are necessary for the
Web application to operate. These components include:

• The Users Module manages the creation, update, removal and authentication of users,
• The Mail Module allows an application to format and send amail,
• The Jobs Module provides a batch job framework for modules to execute long running actions,
• The Events Module implements an eventing system to share events with other modules,
• The Workspace Module defines a workspace area for other plugins to connect and plug into.

Stephane Carrez 9



Ada Web Application Programmer’s Guide 2022-08-02

1.2 General Purpose Components

TheGeneral Purpose Components are components which provide generic functionalities that can be
plugged and used by functional components.

• The Tags Module allows to associate general purpose tags to any database entity,
• The Votes Module allows users to vote for objects defined in the application,
• The Comments Module is a general purpose module that allows to associate user comments to
any database entity,

• The Counters Module defines a general purpose counter service allowing to associate counters
to database entities,

• The Changelogs Module associates logs produced by users to any database entity.

1.3 Functional Components

The Functional Components implement a final functionality for a user. They are using the system
components such as User Module for the user management but also general purpose components
such as Tags Module or Counters Module.

• The Questions Module is a simple question and answer system,
• The Blogs Module is a small blog application which allows users to publish articles,
• The Wikis Module provides a complete Wiki system allowing users to create their own Wiki
environment.

To help in the installation process of final applications, the Setup Application is a special component
that you can decide to customize to provide an installation and configuration process to your own
application.

Stephane Carrez 10



Ada Web Application Programmer’s Guide 2022-08-02

2 Installation

This chapter explains how to build and install the Ada Web Application framework.

2.1 Before Building

Before building the framework, you will need:

• The GNAT Ada compiler,
• Either the MySQL, PostgreSQL or SQLite development headers installed,
• XML/Ada,
• Ada Web Server.

First get, build and install the above tools and libraries. For the best experience, it is necessary to have
the SSL support in Ada Web Server. Indeed, the OpenID Authentication 2.0 can only be used through
HTTPS.

The build process may also need the following commands:

• make (GNUmake),
• gprbuild,
• gprinstall,
• unzip,
• sqlite3,
• mysql,
• psql,
• xsltproc,
• liblzma libraries (used by Ada LZMA),
• CURL libraries (used by CURL support in Ada Utility Library)

The Ada Web Application library also uses the following projects:

• Ada LZMA,
• Ada Utility Library,
• Ada Expression Language Library,
• Ada Security Library,
• Ada Servlet Library,
• Ada Server Faces Library,
• Ada Wiki Library,
• Ada Database Objects Library,
• Ada Keystore Library,
• OpenAPI Ada Library,

Stephane Carrez 11

https://libre.adacore.com/tools/gnat-gpl-edition/
https://libre.adacore.com/libre/tools/xmlada/
https://libre.adacore.com/libre/tools/aws/
https://libre.adacore.com/libre/tools/aws/
https://openid.net/specs/openid-authentication-2_0.html
https://github.com/stcarrez/ada-lzma
https://github.com/stcarrez/ada-util
https://github.com/stcarrez/ada-el
https://github.com/stcarrez/ada-security
https://github.com/stcarrez/ada-servlet
https://github.com/stcarrez/ada-asf
https://github.com/stcarrez/ada-wiki
https://github.com/stcarrez/ada-ado
https://github.com/stcarrez/ada-keystore
https://github.com/stcarrez/swagger-ada


Ada Web Application Programmer’s Guide 2022-08-02

• Dynamo

They are integrated as Git submodules.

2.2 Getting the sources

The AWA framework uses git submodules to integrate several other projects. To get all the sources, use
the following commands:

1 git clone --recursive git@github.com:stcarrez/ada-awa.git
2 cd ada-awa

2.3 Development Host Installation

The PostgreSQL, MySQL and SQLite development headers and runtime are necessary for building
the Ada Database Objects driver. The configure script will use them to enable the ADO drivers. The
configure script will fail if it does not find any database driver.

2.3.1 Ubuntu

First to get the LZMA and CURL support, it is necessary to install the following packages before config-
uring AWA:

1 sudo apt-get install liblzma-dev libcurl4-openssl-dev

MySQL Development installation

1 sudo apt-get install libmysqlclient-dev

MariaDB Development installation

1 sudo apt-get install mariadb-client libmariadb-client-lgpl-dev

SQLite Development installation

1 sudo apt-get install libsqlite3-dev

PostgreSQL Development installation

1 sudo apt-get install postgresql-client libpq-dev

Stephane Carrez 12

https://github.com/stcarrez/dynamo


Ada Web Application Programmer’s Guide 2022-08-02

2.3.2 FreeBSD 12

First to get the LZMA, XML/Ada and CURL support, it is necessary to install the following packages
before configuring AWA:

1 pkg install lzma-18.05 curl-7.66.0 xmlada-17.0.0_1 aws-17.1_2

MariaDB Development installation:

1 pkg install mariadb104-client-10.4.7 mariadb104-server-10.4.7

SQLite Development installation:

1 pkg install sqlite3-3.29.0

PostgreSQL Development installation:

1 pkg install postgresql12-client-12.r1 postgresql12-server-12.r1

Once these packages are installed, youmay have to setup the following environment variables:

1 export PATH=/usr/local/gcc6-aux/bin:$PATH
2 export ADA_PROJECT_PATH=/usr/local/lib/gnat

2.3.3 Windows

It is recommended to use msys2 available at https://www.msys2.org/ and use the pacman command
to install the required packages.

1 pacman -S git
2 pacman -S make
3 pacman -S unzip
4 pacman -S base-devel --needed
5 pacman -S mingw-w64-x86_64-sqlite3

For Windows, the installation is a little bit more complex andmanual. Youmay either download the
files fromMySQL and SQLite download sites or youmay use the files provided by Ada Database Objects
and Ada LZMA in the win32 directory.

For Windows 32-bit, extract the files:

1 cd ada-ado/win32 && unzip sqlite-dll-win32-x86-3290000.zip
2 cd ada-lzma/win32 && unzip liblzma-win32-x86-5.2.4.zip

Stephane Carrez 13



Ada Web Application Programmer’s Guide 2022-08-02

For Windows 64-bit, extract the files:

1 cd ada-ado/win32 && unzip sqlite-dll-win64-x64-3290000.zip
2 cd ada-lzma/win32 && unzip liblzma-win64-x64-5.2.4.zip

If your GNAT 2019 compiler is installed in C:/GNAT/2019, you may install the liblzma, MySQL and
SQLite libraries by using msys cp with:

1 cp ada-lzma/win32/*.dll C:/GNAT/2019/bin
2 cp ada-lzma/win32/*.dll C:/GNAT/2019/lib
3 cp ada-lzma/win32/*.a C:/GNAT/2019/lib
4 cp ada-ado/win32/*.dll C:/GNAT/2019/bin
5 cp ada-ado/win32/*.dll C:/GNAT/2019/lib
6 cp ada-ado/win32/*.lib C:/GNAT/2019/lib
7 cp ada-ado/win32/*.a C:/GNAT/2019/lib

2.4 AdaWeb Server

The AdaWeb Server should be compiled with the SSL support if you want to use the OAuth 2.0 protocol
and integrate with Google or Facebook authentication systems. The AWS version shipped with GNAT
2019 and GNAT 2020 will not work because it does not support SSL.

Youmay build AWS by using:

1 git clone --recursive -b 20.2 https://github.com/AdaCore/aws
2 cd aws
3 make SOCKET=openssl setup build install

2.5 Configuration

The library uses the configure script to detect the build environment, check for Ada Utility Library
library. The configure script provides several standard options and youmay use:

• --prefix=DIR to control the installation directory,
• --enable-shared to enable the build of shared libraries,
• --disable-static to disable the build of static libraries,
• --enable-distrib to build for a distribution and strip symbols,
• --disable-distrib to build with debugging support,
• --enable-coverage to build with code coverage support (-fprofile-arcs -ftest-
coverage),

• --with-aws=PATH to control the installation path of Ada Web Server,

Stephane Carrez 14

https://libre.adacore.com/libre/tools/aws/
https://oauth.net/2/
https://github.com/stcarrez/ada-util


Ada Web Application Programmer’s Guide 2022-08-02

• --with-xmlada=PATH to control the installation path of XML/Ada,
• --help to get a detailed list of supported options.

In most cases you will configure with the following command:

1 ./configure

By default, the framework will be installed in /usr/local directory. If you want to install the frame-
work in a specific directory, use the --prefix option as follows:

1 ./configure --prefix=/opt/install-awa

2.6 Build

A�er configuration is successful, you can build the library by running:

1 make

2.7 Installation

The installation is done by running the install target:

1 make install

2.8 Using

To use the library in an Ada project, add the following line at the beginning of your GNAT project file:

1 with "awa";

Depending on your application, you may also need to add the following GNAT projects which are
provided by one or several of the libraries that Ada Web Application relies on:

1 with "utilada";
2 with "elada";
3 with "security";
4 with "servletada";
5 with "servletada_aws";
6 with "asf";
7 with "ado_mysql";
8 with "ado_sqlite";

Stephane Carrez 15



Ada Web Application Programmer’s Guide 2022-08-02

9 with "ado_postgresql";

The library comes with several optional modules that you decide to use according to your needs. When
you decide to use a module, you should add the GNAT project that corresponds to the module you
wish to integrate For example, to use the Jobs and Wikismodules, you will need the following lines
in your GNAT project:

1 with "awa_jobs";
2 with "awa_wikis";

Stephane Carrez 16



Ada Web Application Programmer’s Guide 2022-08-02

3 Tutorial

Ada Web Application is a complete framework that allows to write web applications using the Ada
language. Through a complete web application, the tutorial explains various aspects in setting up and
building an application by using AWA.

The tutorial assumes that you have already installed the following so�ware on your computer:

• The GNAT Ada compiler,
• The Ada Web Application framework and its associated dependencies (XML/Ada and AWS),
• The Dynamo code generator.

The ArgoUMLmodelization tool is provided by the Dynamo package. Since this is a Java application, it
uses the Java JRE (either 1.8 or 1.11, the OpenJDK 1.11 is recommended).

3.1 The reviewweb application

The review web application allows users to write reviews about a product, a so�ware or a web site
and share them to the Internet community. The community can read the review, participate by adding
comments and voting for the reviewed product or so�ware.

Stephane Carrez 17

http://libre.adacore.com/tools/gnat-gpl-edition/
http://libre.adacore.com/tools/xmlada/
https://github.com/AdaCore/aws
https://github.com/stcarrez/dynamo
https://github.com/argouml-tigris-org/argouml
https://github.com/stcarrez/dynamo


Ada Web Application Programmer’s Guide 2022-08-02

Figure 3: ReviewWeb Application Use Cases

The AWA framework provides several modules that are ready to be used by our application. The login
and usermanagement is handled by the framework so this simplifies a lot the design of our application.
We will see in the tutorial how we can leverage this to our review application.

Because users of our review web application have di�erent roles, we will need permissions to make
sure that only reviewers canmodify a review. We will see how the AWA framework leverages the Ada
Security library to enforce the permissions.

The AWA framework also integrates three other modules that we are going to use: the Tags Module,
the Votes Module and the Comments Module.

Sincemany building blocks are already provided by the AWA framework, we will be able to concentrate
on our own review application module.

Stephane Carrez 18



Ada Web Application Programmer’s Guide 2022-08-02

3.2 Setting up the project

3.2.1 Project creation with Dynamo

The first step is to create the new project. Since creating a project from scratch is never easy we will
use the Dynamo tool to build our initial review web application. Dynamo is a command line tool that
provides several commands that help in several development tasks. For the project creation we will
give:

• the output directory,
• the project name,
• the license to be used for the project,
• the project author’s email address.

Choose the project name with care as it defines the name of the Ada root package that will be used by
the project. For the license, you have the choice between GPL v2, GPL v3, MIT, BSD 3 clauses, Apache 2
or some proprietary license.

1 dynamo -o atlas create-project -l apache atlas email@domain.com

The Dynamo project creation will build the atlas directory and populate it with many files:

• A set of configure, Makefile, GNAT project files to build the project,
• A set of Ada files to build your Ada web application,
• A set of presentation files for the web application.

Once the project is created, wemust configure it to find the Ada compiler, libraries and so on. This is
done by the following commands:

1 cd atlas
2 ./configure

At this step, youmay even build your new project and start it. The make command will build the Ada
files and create the bin/atlas-server executable that represents the web application.

1 make generate build
2 bin/atlas-server start

Once the server is started, youmay point your browser to the following location:

1 http://localhost:8080/atlas/index.html

Stephane Carrez 19

https://github.com/stcarrez/dynamo
https://github.com/stcarrez/dynamo
http://opensource.org/licenses/GPL-2.0
http://opensource.org/licenses/GPL-3.0
http://opensource.org/licenses/MIT
http://opensource.org/licenses/BSD-3-Clause
http://opensource.org/licenses/Apache-2.0
https://github.com/stcarrez/dynamo


Ada Web Application Programmer’s Guide 2022-08-02

3.2.2 Creating the reviewmodule with Dynamo

With the Ada Web Application framework, a web application is composed of modules where each
module brings a specific functionality to the application. AWA provides a module for user manage-
ment, another for comments, tags, votes, andmany others. The application can decide to use these
modules or not. The AWAmodule framework helps in defining the architecture and designing your
web application.

For the review web application we will create our ownmodule dedicated for the reviewmanagement.
The module will be an Ada child package of our root project package. From the Ada point of view, the
final module will be composed of the following packages:

• A Modules package represents the business logic of the module. It is provides operations to
access andmanage the data owned by the module.

• A Beans package holds the Ada beans that make the link between the presentation layer and
business logic.

• A Models package holds the data model to access the database content. This package is gener-
ated from UML and will be covered by a next tutorial.

To help in setting up a new AWAmodule, the Dynamo tool provides the add-module command. You
just have to give the name of the module, which is the name of the Ada child package. Let’s create our
reviewsmodule now:

1 dynamo add-module reviews

The command generates the new AWAmodule and modifies some existing files to register the new
module in the application. You can build your web application at this stage even though the new
module will not do anything yet for you.

3.3 Designing the datamodel

Our review web application will need to access a database to store the review information. For this, we
must define a data model that will describe how the information is stored in the database and how we
can access such information from Ada.

A Model Driven Engineering or MDE promotes the use of models to ease the development of so�ware
and systems. The Unified Modeling Language is used to modelize various parts of the so�ware. UML is
a graphical type modelling language and it has many diagrams but we are only going to use one of
them: the Class Diagram.

The class diagram is probably the most powerful diagram to design, explain and share the data model
of any application. It defines the most important data types used by an application with the relation

Stephane Carrez 20

https://github.com/stcarrez/dynamo
https://github.com/stcarrez/dynamo
http://en.wikipedia.org/wiki/Model-driven_engineering
http://en.wikipedia.org/wiki/Model-driven_engineering
http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://en.wikipedia.org/wiki/Class_diagram


Ada Web Application Programmer’s Guide 2022-08-02

they have with each other. In the class diagram, a class represents an abstraction that encapsulates
data member attributes and operations. The class may have relations with others classes.

3.3.1 ArgoUML setup

When using a UMLmodelization, two specific profiles must be configured before using the tool:

• The Dynamo profile that describes the base data types for our UML model. These types are
necessary for the code generator to work correctly.

• The AWA profile that describes the tables andmodules provided by AWA. We will need it to get
the user UML class definition.

These UML profiles are located in the /usr/share/dynamo/base/uml directory a�er Dynamo and
AWA are installed.

When you use the argouml command provided by the Dynamo package, the UML profiles should
already be accessible and you have nothing to setup.

If you have installed ArgoUML by downloading it, you must setup these UML profiles. To config-
ure ArgoUML, go in the Edit -> Settings menu and add the directory in the Default XMI
directories list. Beware that youmust restart ArgoUML to be able to use the new profiles.

Figure 4: Setting ArgoUML profiles

Once the directory is added, restart ArgoUML, go again in Edit -> Settingsmenu and select the
AWA.xmi and Dynamo.xmi profiles. As soon as they are selected and applied on the configuration,
you should restart ArgoUML another time for these two profiles to become usable.

3.3.2 Modelize the domainmodel in UML

The UMLmodel must use a number of Dynamo artifacts for the code generation to work properly. The
artifact describes some capabilities andbehavior for the code generator to perform itswork. Stereotype
names are enclosed within << and >>markers. Dynamo uses the following stereotypes:

Stephane Carrez 21

https://github.com/stcarrez/dynamo
https://github.com/stcarrez/dynamo
https://github.com/stcarrez/dynamo
https://github.com/argouml-tigris-org/argouml
http://argouml.tigris.org/
https://github.com/argouml-tigris-org/argouml
https://github.com/argouml-tigris-org/argouml
https://github.com/stcarrez/dynamo
https://github.com/stcarrez/dynamo


Ada Web Application Programmer’s Guide 2022-08-02

• The DataModel stereotype must be applied on the package which contains the model to gener-
ate. This stereotype activates the code generation (other packages are not generated).

• The Table stereotype must be applied to the class. It controls which database table and Ada
type will be generated.

• ThePK stereotypemust bedefined in atmost one attribute of the class. This indicates the primary
key for the database table. The attribute type must be an integer or a string. This is a limitation
of the Ada code generator.

• The Version stereotype must be applied on the attribute that is used for the optimistic locking
implementation of the database layer.

• The Auditable stereotype can be applied to some attributes and relations when you want to
audit changes to these attributes or relations. When used, the ADO framework will track changes
and automatically record them in a specific auditing table.

Figure 5: The Review Table UML Model

In our UML model, the Review table is assigned the Table stereotype so that an SQL table will be
created as well as an Ada tagged type to represent our table. The id class attribute represents the
primary key and thus has the PK stereotype. The version class attribute is the database column
used by the optimistic locking implementation provided by Ada Database Objects. This is why is has
the Version stereotype. The title, site, create_date, text and allow_comments attributes
represent the information we want to store in the database table. They are general purpose attributes
and thus don’t need any specific stereotype. For each attribute, the Dynamo code generator will
generate a getter and a setter operation that can be used in the Ada code.

To tune the generation, several UML tagged values can be selected and added on the table or on a table
attribute. By applying a stereotype to the class, several tagged values can be added. By selecting the

Stephane Carrez 22

http://en.wikipedia.org/wiki/Optimistic_concurrency_control
http://en.wikipedia.org/wiki/Optimistic_concurrency_control
https://github.com/stcarrez/ada-ado
https://github.com/stcarrez/dynamo


Ada Web Application Programmer’s Guide 2022-08-02

Tagged Values tab in ArgoUMLwe can edit and setup new values. For the Review table, the dynamo
.table.name tagged value defines the name of the SQL database table, in our case atlas_review.

Figure 6: The tagged value for the Review table

The text attribute in the Review table is a string that can hold some pretty long text. To control the
length of the SQL column, we can set the dynamo.sql.length tagged value and tell what is that
length.

Stephane Carrez 23



Ada Web Application Programmer’s Guide 2022-08-02

Figure 7: The tagged value for the text column in review table

Once the UMLmodel is designed, it is saved in the project directory uml. Dynamo will be able to read
the ArgoUML file format (.zargo extension) so there is no need to export the UML in XMI.

3.3.3 Adding relations in the UMLmodel

The final UMLmodel of our review application is fairly simple. We just added a table and a bean decla-
ration. To benefit from the user management in AWA, we can use the AWA::Users::Models::User
class that is defined in the AWA UML model. The reviewed-by association will create an attribute
reviewer in our class. The code generator will generate a Get_Reviewer and Set_Reviewer oper-

Stephane Carrez 24



Ada Web Application Programmer’s Guide 2022-08-02

ation in the Ada code. The SQL table will contain an additional column reviewer that will hold the
primary key of the reviewer.

Figure 8: The ReviewWeb Application UML Model

The Review_Bean class is an Ada Bean abstract class that will be generated by the code generator.
The Bean stereotype activates the bean code generator and the generator will generate some code

Stephane Carrez 25



Ada Web Application Programmer’s Guide 2022-08-02

support that is necessary to turn the Review_Bean tagged record into an Ada Bean aware type. We
will see in the section that we will only have to implement the save and delete operation that are
described in this UMLmodel.

3.3.4 Makefile setup

The Makefile that was generated by the Dynamo create-project commandmust be updated to
setup a number of generation arguments for the UML to Ada code generator. Edit the Makefile to
change DYNAMO_ARGS into:

1 DYNAMO_ARGS=--package Atlas.Reviews.Models db uml/atlas.zargo

The --package option tells Dynamo to generate only the model for the specified package. The db
directory is the directory that will contain the SQLmodel files.

3.3.5 Generating the Adamodel

To run the generator, we can use the generatemake target:

1 make generate

The Dynamo code generator reads the file uml/atlas.zargo and the UML model it contains and
generates:

• the Ada package Atlas.Reviews.Modelswhich contains the definition of the Review table.
Themodel files are created in the directorysrc/modelswhich is separate fromyour Ada sources.
You can safely remove the files in src/models and have them re-built by using Dynamo. It is
not recommended to modify these files.

• the SQL files to create the MySQL or SQLite database. Depending on the AWAmodules which are
used, the generated SQL files will contain additional tables that are used by the AWAmodules.
The SQL files are generated in the db/mysql, db/sqlite and db/postgresql directories.

3.3.6 Creating the database

Until now we designed our application UMLmodel, we have our Ada code generated, but we need a
databasewith the tables for our application. We can do this by using thecreate-database command
in Dynamo. This command needs several arguments:

• The directory that contains the SQLmodel files. In our case, this is db.
• The information to connect to the database, the database name, the user and its password. This
information is passed in the form of a database connection string.

Stephane Carrez 26

https://github.com/stcarrez/dynamo
https://github.com/stcarrez/dynamo
https://github.com/stcarrez/dynamo
https://github.com/stcarrez/dynamo
https://github.com/stcarrez/dynamo


Ada Web Application Programmer’s Guide 2022-08-02

• The name of the database administration account to connect to the server and create the new
database.

• The optional password for the database administration account.

If the MySQL server is running on your host and the admin account does not have any password, you
can use the following command:

1 dynamo create-database \
2 db 'mysql://localhost/demo_atlas?user=demo&password=demo' root

The create-database creates the database (demo_atlas) with the tables that are necessary for the
application. It also creates the demo user and give it the necessary MySQL grants to connect to the
demo_atlas database.

3.4 Adding a creation form

Wewill start with the presentation layer by adding two pages in our web application. A first page will
contain the list of reviews and the second page will contain a form to create or update a review.

AWA uses the Facelets technology to allow developers write and design the presentation layer of the
web application. This technology is commonly used in J2EE applications. A page is represented by
an XML file that contains HTML code, includes some stylesheets, Javascript files andmakes the link
between the presentation and the web application.

3.4.1 Adding pages

Dynamo provides at least two commands that help in adding presentation files. The add-page com-
mand adds a simple page that can be edited and filled with real content. We will use it for the creation
of the page to display the list of reviews.

1 dynamo add-page reviews/list

The add-form command creates another template of page that includes an HTML form to let a user
submit some data to the web application.

1 dynamo add-form reviews/edit-review

These two commands will create the following files and they can now bemodified.

1 ./web/reviews/list.xhtml
2 ./web/reviews/edit-review.xhtml
3 ./web/reviews/forms/edit-review-form.xhtml

Stephane Carrez 27

http://en.wikipedia.org/wiki/Facelets


Ada Web Application Programmer’s Guide 2022-08-02

3.4.2 The create review form

In Facelets, anHTML form is created by using the<h:form> component from theHTML JSF namespace.
This component will generate the HTML form tag and it will also manage the form submission.

The Ada Server Faces provides a set of widget components that facilitate the design of web application.
The <w:inputText> component renders a title field with an HTML <label> and an HTML <input>
text. We will use it to let the user enter the review title and the site URL being reviewed. The HTML
<textarea> is provided by the JSF component <h:inputTextArea>. The review submit form is
defined by the following XML extract:

1 <h:form xmlns:h="http://java.sun.com/jsf/html
2 xmlns:w="http://code.google.com/p/ada-asf/widget">
3 <h:inputHidden id='entity-id' value='#{review.id}' required='false'/>
4 <w:inputText title='Title' value='#{review.title}'/>
5 <w:inputText title='Site' value='#{review.site}'/>
6 <h:inputTextArea rows='20' value='#{review.text}'/>
7 <h:commandButton value='Save'
8 action='#{review.save}'/>
9 </h:form>

Before closing the <h:form> component, we will put a <h:commandButton> that will render the
form submit button.

3.4.3 How it works

Before going further, let’s see how all this works. The principle below is exactly the same for a Java
Server Faces application.

First, when the page is rendered the UEL expressions that it contains are evaluated. The #{review
.title}, #{review.site} and #{review.text} are replaced by the content provided by the
review object which is an Ada Bean provided by the Review_Bean tagged record.

When the page is submitted by the user, the input values submitted in the form are saved in the review
bean, again by using the UEL expression. The <h:commandButton> action is then executed. This is
also an UEL that indicates a method to invoke on the bean.

To sum up, the UEL makes the binding between the presentation layer in Facelets files and the Ada or
Java beans.

The Ada Bean layer provides getter and setter to allow the UEL to retrieve and set values. For this, the
Review_Bean tagged record implements two operations that are defined in the [Bean](https://
github.com/stcarrez/ada-util/source/browse/trunk/src/util-beans-basic.ads)
interface:

Stephane Carrez 28

http://en.wikipedia.org/wiki/Facelets
http://demo.vacs.fr/demo/jsf/html/view.html
https://github.com/stcarrez/ada-asf
http://demo.vacs.fr/demo/widgets/view.html
http://en.wikipedia.org/wiki/JavaServer_Faces
http://en.wikipedia.org/wiki/JavaServer_Faces
http://en.wikipedia.org/wiki/Unified_Expression_Language
http://en.wikipedia.org/wiki/Unified_Expression_Language
http://en.wikipedia.org/wiki/Unified_Expression_Language
http://en.wikipedia.org/wiki/Unified_Expression_Language
http://en.wikipedia.org/wiki/Facelets
http://en.wikipedia.org/wiki/Unified_Expression_Language


Ada Web Application Programmer’s Guide 2022-08-02

1 overriding
2 function Get_Value (From : in Review_Bean;
3 Name : in String) return Util.Beans.Objects.Object;
4
5 overriding
6 procedure Set_Value (From : in out Review_Bean;
7 Name : in String;
8 Value : in Util.Beans.Objects.Object);

The Get_Value operation is called to retrieve one of the Ada Bean member attribute and the
Set_Value operation is called during form submission to set the member attribute.

Figure 9: Presentation, Ada Beans and Module interactions

Then the form button is pressed, the HTML form is submitted and received by the server. The <h:
form> component identifies the form submission and each input component will validate the input
fields. When everything has been validated, the <h:commandButton> component invokes the Save
procedure that is declared as follows in the Review_Bean tagged record:

1 overriding
2 procedure Save (Bean : in out Review_Bean;
3 Outcome : in out Ada.Strings.Unbounded.Unbounded_String

);

Stephane Carrez 29



Ada Web Application Programmer’s Guide 2022-08-02

In the Ada Bean layer, we have to call the business logic to perform the save operation.

The business logic part is provided by the Adamodulewhose initial skeletonwas generated by Dynamo.
That layer is responsible for defining how the data is created, retrieved andmodified. As far as we are
concerned, this is rather simple since we only have to verify the permission and save the review object
within some transaction. In other modules, several objects may be envolved andmore complex rules
may be defined for the integrity and validity of these objects.

The last part of the architecture is the data model layer that was in fact generated by Dynamo from the
UMLmodel. It is responsible for loading and saving Ada objects into the database.

3.4.4 The Review_Bean type declaration

When we designed our UML model, we have created the Review_Bean UML class and gave that
class the Bean stereotype. We also declared two operations (save and delete) on that class. With
this definition, Dynamo has generated in the Atlas.Reviews.Models package the Review_Bean
abstract type. This type is abstract because we have to implement the Save and Delete operations.
These are the two operations that can be called by an action such as used by the <h:commandButton>
component.

The Atlas.Reviews.Models package is a generated package and it must not be modified. To imple-
ment our Ada Bean, we will add the Review_Bean type in our own package: the Atlas.Reviews.
Beans package.

For this the Review_Bean type will inherit from the Atlas.Reviews.Models.Review_Bean type
and it will implement the required operations. The type declaration looks like this:

1 package Atlas.Reviews.Beans is
2 ...
3 type Review_Bean is new Atlas.Reviews.Models.Review_Bean with record
4 Module : Atlas.Reviews.Modules.Review_Module_Access := null;
5 end record;
6 ...

3.4.5 The Review_Bean implementation

The Save and Delete proceduremust be implemented and since thewhole business logic ismanaged
by the module layer, we just have to call the associated module procedure as follows:

1 overriding
2 procedure Save (Bean : in out Review_Bean;

Stephane Carrez 30

https://github.com/stcarrez/dynamo
https://github.com/stcarrez/dynamo
https://github.com/stcarrez/dynamo


Ada Web Application Programmer’s Guide 2022-08-02

3 Outcome : in out Ada.Strings.Unbounded.Unbounded_String
);

4 begin
5 Bean.Module.Save (Bean);
6 end Save;
7
8 overriding
9 procedure Delete (Bean : in out Review_Bean;
10 Outcome : in out Ada.Strings.Unbounded.Unbounded_String

);
11 begin
12 Bean.Module.Delete (Bean);
13 end Delete;

3.4.6 The Review_Bean creation

The AWA framework must be able to create the review bean instance when a page is processed. For
this, there are three steps that are necessary:

• wemust define a create function whose role is to allocate the Review_Bean instance and return
it. At the same time, the function can setup some pre-defined values for the object. The Dynamo
tool has generated for us an example of such function so that there is nothing to do.

1 function Create_Review_Bean (Module : in Atlas.Reviews.Modules.
Review_Module_Access)

2 return Util.Beans.Basic.Readonly_Bean_Access is
3 Object : constant Review_Bean_Access := new Review_Bean;
4 begin
5 Object.Module := Module;
6 return Object.all'Access;
7 end Create_Review_Bean;

• the creation function must be registered in the AWA framework under a name that identifies the
create function. Again, an example of this registration has been generated by Dynamo and we
are going to use it as is.

1 Register.Register (Plugin => Plugin,
2 Name => "Atlas.Reviews.Beans.Reviews_Bean",
3 Handler => Atlas.Reviews.Beans.Create_Review_Bean'

Access);

Stephane Carrez 31

https://github.com/stcarrez/dynamo
https://github.com/stcarrez/dynamo


Ada Web Application Programmer’s Guide 2022-08-02

• the last step is the configuration step. In the module XML configuration file, we must declare the
Ada bean name and indicate what create function must be called to create it. We will use the
managed-bean XML declaration that comes from Java Server Faces. We can declare as many
Ada beans as we want each of themwith a di�erent name.

1 <managed-bean>
2 <description>An example of a bean (change description and bean name)

</description>
3 <managed-bean-name>review</managed-bean-name>
4 <managed-bean-class>Atlas.Reviews.Beans.Reviews_Bean</managed-bean-

class>
5 <managed-bean-scope>request</managed-bean-scope>
6 </managed-bean>

When the UEL expression #{review.title} is used, the AWA framework looks for the Ada bean
represented by review and identified by the managed-bean-name entry. It then calls the create
function defined by the managed-bean-class. The Ada bean object is then stored either in the
request context, a session context or an application context. This is defined by the managed-bean
-scope entry. The request scope means that the Ada bean object is created once for each request.
Concurrent page accesses will use their own Ada bean object instance. The session scope means that
the Ada bean object is shared between requests on the same session. The application scopemeans
that the Ada bean object is global to the application, shared by every request and every session.

3.4.7 Navigation rules

We have seen that when the review creation form is submitted the <h:commandButton> component
has invoked the Save procedure of our Review_Bean object. The review object has been created and
saved in the database and we kept the relation between the new review and the user.

Wemust now decide what should happen for the user to see the result. We could display a new form,
update some page content or redirect to a new page. All this is defined by the navigation rules.

The navigation rules is the Java Server Faces mechanism that controls and defines what is the next
page or view that must be displayed to a user. The navigation rules are configured in the module XML
configuration file.

In the definition below, the navigation rule defines that the user is redirected to the page /reviews/
list.xhtml if the current page was /reviews/edit-review.xhtml and the operation returned
success.

1 <navigation-rule>
2 <from-view-id>/reviews/edit-review.xhtml</from-view-id>

Stephane Carrez 32

http://docs.oracle.com/javaee/5/tutorial/doc/bnawq.html
http://en.wikipedia.org/wiki/JavaServer_Faces
http://en.wikipedia.org/wiki/Unified_Expression_Language
http://en.wikipedia.org/wiki/JavaServer_Faces


Ada Web Application Programmer’s Guide 2022-08-02

3 <navigation-case>
4 <from-outcome>success</from-outcome>
5 <to-view-id>/reviews/list.xhtml</to-view-id>
6 <redirect/>
7 </navigation-case>
8 </navigation-rule>

3.5 Creating themodule

3.5.1 Adding themodule operations

Now, we must add two operations on the business logic to save a review and delete a review. The
Dynamo code generator provides the add-module-operation command that will help us in this task.
Let’s run it:

1 dynamo add-module-operation reviews review Save
2 dynamo add-module-operation reviews review Delete

The first parameter is the name of the module where the new operation is added. This is the name
of the module that was created by using the add-module operation. In our case, this is the reviews
module.

The second parameter is the name of the database entity or database table if you prefer.

The add-module-operation commandmodifies the Adamodule specification and body to define
and implement the following operation:

1 package Atlas.Reviews.Modules is
2 ...
3 procedure Save (Model : in Review_Module;
4 Entity : in out Atlas.Reviews.Models.Review_Ref'Class);
5 ...

The object to save in the Review table is passed as parameter to the Save operation. The procedure
body that was generated is rather simple but functional: it just saves the object in the database within
a transaction. In many cases it is ready to use but you may also need to modify the operation to either
change the implementation or even add new parameters.

3.5.2 Saving our review

Before saving our review entity object, we want to associate it with the current user. We have to know
who is the current user and for this we can use the AWA service context. The AWA service context is

Stephane Carrez 33

https://github.com/stcarrez/dynamo


Ada Web Application Programmer’s Guide 2022-08-02

an object that is provided by the AWA.Services.Contexts package and that provides some useful
contextual information for the business logic:

• It indicates the optional user that is authenticated and is doing the call,
• It gives access to the database connections that the business logic can use,
• It allows to manage database transactions.

The current service context is retrieved by using the AWA.Services.Contexts.Current function
andwe can use the Get_User function to know the current user. The Save procedure implementation
is the following:

1 package ASC renames AWA.Services.Contexts;
2 procedure Save (Model : in Review_Module;
3 Entity : in out Atlas.Reviews.Models.Review_Ref'Class)

is
4 Ctx : constant ASC.Service_Context_Access := ASC.Current;
5 DB : ADO.Sessions.Master_Session := AWA.Services.Contexts.

Get_Master_Session (Ctx);
6 begin
7 Ctx.Start;
8 if not Entity.Is_Inserted then
9 Entity.Set_Reviewer (Ctx.Get_User);
10 Entity.Set_Create_Date (Ada.Calendar.Clock);
11 end if;
12 Entity.Save (DB);
13 Ctx.Commit;
14 end Save;

3.5.3 Setting up the permissions

Because we want to bring someminimal security to the review web application, we are going to setup
some permissions that will be enforced by the business logic layer when a save or delete operation is
done. The AWA framework uses the Ada Security to implement and enforce permissions. For this we
need:

• An Ada definition of the permission,
• Adding a verification to enforce the permission in the newmodule operations,
• A definition of the permission rules.

Generating the permission

Stephane Carrez 34

https://github.com/stcarrez/ada-security


Ada Web Application Programmer’s Guide 2022-08-02

Dynamo provides the add-permissions command to help us in the first task. It generates some Ada
code that declares the permissions. It also provides a default configuration for the new permissions.

1 dynamo add-permissions reviews review

The first parameter is the name of our module where the new permissions are declared and the second
parameter is the name of the database entity. The command will modify the Ada module specification
and add the following lines:

1 package Atlas.Reviews.Modules is
2 ...
3 package ACL_Create_Reviews is new Security.Permissions.Definition ("

review-create");
4 package ACL_Delete_Reviews is new Security.Permissions.Definition ("

review-delete");
5 package ACL_Update_Reviews is new Security.Permissions.Definition ("

review-update");

Each of these package instantiation, declares a single permission identified by a name.

Enforcing security

Now that we have our permission, we can enforce the security in the Save and Delete operation. This
is done by using the Check operation provided by the AWA.Permissions package.

To verify that the user has the permission to create a new review, we can use the following call:

1 AWA.Permissions.Check (Permission => ACL_Create_Reviews.Permission);

This operationwill verify that the user has the given permission and it will raise the AWA.Permissions
.NO_PERMISSION exception if this is not the case. By raising such exception, the Check procedure
acts as a barrier that grants or not the access to the rest of the code.

Now, if we have a review to modify, we will use the update permission and also give the review object
to the Check operation so that it can verify if that particular review can bemodified.

1 AWA.Permissions.Check (Permission => ACL_Update_Reviews.Permission,
2 Entity => Entity);

Configuring the permission

Until now we have created the permission and enforced it in the business logic. We have not defined
the rules that tell what is really checked to verify the permission. The configuration part is defined

Stephane Carrez 35



Ada Web Application Programmer’s Guide 2022-08-02

in the XML file config/reviews.xml that was generated when the reviews module was created.
The add-permissions command has modified the XML file to provide some default configuration.
It has generated a XML permission for the review-create, review-update and review-delete
permissions.

The review-create permission is defined as follows:

1 <auth-permission>
2 <name>review-create</name>
3 </auth-permission>

This XML definition associate the Authenticated Permission controller to the review-create permis-
sion. With that controller the permission is granted if the security context has a principal (ie, a user is
authenticated).

The review-update permission has another definition that we must change. Basically, we want
that only the reviewer that created the review can update the review. For this we will use the entity
permission controller provided by AWA. The XML definition is the following:

1 <entity-permission>
2 <name>review-update</name>
3 <entity-type>altas_review</entity-type>
4 <sql>
5 SELECT r.id FROM atlas_review AS r
6 WHERE r.id = :entity_id AND r.reviewer_id = :user_id
7 </sql>
8 </entity-permission>

When the permission is checked, the entity permission controller will use the SQL statement to verify
the permission. The SQL statement has three parameters:

• user_id is the ID of the user associated with the security context. If there is no authentified
user, the permission is refused.

• entity_id is the ID of the database entity as passed to the Check procedure and propagated
to the permission controller.

• entity_type is a unique number that identifies the database entity type or database table
if you prefer. It is created and setup automatically according to the entity type defined in the
entity-type XMLmember. It is not used in our example.

At the end, the above SQL statement verifies that the review exists and was created by the current user.

Stephane Carrez 36

https://github.com/stcarrez/ada-securitywiki/Security_Policies#Authenticated_Permission


Ada Web Application Programmer’s Guide 2022-08-02

3.6 Using database queries

Our next step is now to list the reviews that have been created. We need to add a page that will list the
reviews and we need to implement a database query to fetch the information.

3.6.1 Adding database queries

Since we need to access the list of reviews from the XHTML files, we will map the SQL query re-
sult to a list of Ada Beans objects. For this, an [XML query mapping|https://code.google.com/p/ada-
ado/wiki/QueryMapping] is created to tell how to map the SQL query result into some Ada record. The
XML query mapping is then processed by Dynamo to generate the Ada Beans implementation. The
XML query mapping is also read by AWA to get the SQL query to execute.

A template of the XML query mapping can be added to a project by using the dynamo add-query
command. The first parameter is the module name (reviews) and the second parameter the name of
the query (list). The command will generate the file db/reviews-list.xml.

1 dynamo add-query reviews list

The generated XML query mapping is an example of a query. You can replace it or update it according
to your needs. The first part of the XML query mapping is a class declaration that describes the type
to represent each row returned by our query. Within the class, a set of property definition describes
the class attributes with their type and name.

1 <query-mapping package='Atlas.Reviews.Models'>
2 <class name="Atlas.Reviews.Models.List_Info" bean="yes">
3 <comment>The list of reviews.</comment>
4 <property type='Identifier' name="id">
5 <comment>the review identifier.</comment>
6 </property>
7 <property type='String' name="title">
8 <comment>the review title.</comment>
9 </property>
10 ...
11 </class>
12 </query-mapping>

Following the class declaration, the query declaration describes a query by giving it a name and
describing the SQL statement to execute. By having the SQL statement separate and external to the
application, we can update, fix and tune the SQL without rebuilding the application. The Dynamo code
generator will use the query declaration to generate a query definition that can be referenced and
used from the Ada code.

Stephane Carrez 37

https://github.com/stcarrez/dynamo
https://github.com/stcarrez/dynamo


Ada Web Application Programmer’s Guide 2022-08-02

The SQL statement is defined within the sql XML entity. The optional sql-count XML entity is used
to associate a count query that can be used for the pagination.

We want to display the review with the author’s name and email address. The list will be sorted by
date to show the newest reviews first. The SQL to execute is the following:

1 <query-mapping package='Atlas.Reviews.Models'>
2 ...
3 <query name='list'>
4 <comment>Get the list of reviews</comment>
5 <sql>
6 SELECT
7 r.id,
8 r.title,
9 r.site,
10 r.create_date,
11 r.allow_comments,
12 r.reviewer_id,
13 a.name,
14 e.email,
15 r.text
16 FROM atlas_review AS r
17 INNER JOIN awa_user AS a ON r.reviewer_id = a.id
18 INNER JOIN awa_email AS e ON a.email_id = e.id
19 ORDER BY r.create_date DESC
20 LIMIT :first, :last
21 </sql>
22 <sql-count>
23 SELECT
24 count(r.id)
25 FROM atlas_review AS r
26 </sql-count>
27 </query>
28 </query-mapping>

The query has two named parameters represented by :first and :last. These parameters allow to
paginate the list of reviews.

The complete source can be seen in the file: db/reviews-list.xml.

Once the XML query is written, the Ada code is generated by Dynamo by reading the UMLmodel and all
the XML query mapping defined for the application. Dynamomerges all the definitions into the target
Ada packages and generates the Ada code in the src/model directory. You can use the generate
make target:

Stephane Carrez 38

https://github.com/stcarrez/atlas/blob/master/db/reviews-list.xml
https://github.com/stcarrez/dynamo
https://github.com/stcarrez/dynamo


Ada Web Application Programmer’s Guide 2022-08-02

1 make generate

or run the following commandmanually:

1 dynamo generate db uml/atlas.zargo

From the List_Info class definition, Dynamo generates the List_Info tagged record. The record
contains all the data members described in the class XML entity description. The List_Info repre-
sents one row returned by the SQL query. The attributes of the List_Info can be accessed from the
XHTML files by using UEL expression and the property name defined for each attribute.

To describe the list of rows, Dynamo generates the List_Info_Beans package which instantiates the
Util.Beans.Basic.Lists generic package. This provides an Ada vector for the List_Info type
and an Ada bean that gives access to the list.

1 package Atlas.Reviews.Models is
2 ...
3 type List_Info is new Util.Beans.Basic.Readonly_Bean with record
4 ...
5 package List_Info_Beans is
6 new Util.Beans.Basic.Lists (Element_Type => List_Info);
7 package List_Info_Vectors renames List_Info_Beans.Vectors;
8 subtype List_Info_List_Bean is List_Info_Beans.List_Bean;
9 subtype List_Info_Vector is List_Info_Vectors.Vector;
10 Query_List : constant ADO.Queries.Query_Definition_Access;
11 ...
12 end Atlas.Reviews.Models;

The generated code can be seen in src/model/atlas-reviews-models.ads.

3.6.2 Implementing the review list bean

In order to access the list of reviews from the XHTML facelet file, we must create an Ada bean that
provides the list of reviews. This Ada bean is modelized in the UMLmodel and we define:

• A set of attributes to manage the review list pagination (page, page_size, count)
• An Ada bean action that can be called from the XHTML facelet file (load)

The Review_List_Bean tagged record will hold the list of reviews for us:

1 package Atlas.Reviews.Beans is
2 ...

Stephane Carrez 39

https://github.com/stcarrez/dynamo
https://github.com/stcarrez/dynamo
https://github.com/stcarrez/atlas/blob/master/src/model/atlas-reviews-models.ads#L188


Ada Web Application Programmer’s Guide 2022-08-02

3 type Review_List_Bean is new Atlas.Reviews.Models.Review_List_Bean
with record

4 Module : Atlas.Reviews.Modules.Review_Module_Access := null
;

5 Reviews : aliased Atlas.Reviews.Models.List_Info_List_Bean;
6 Reviews_Bean : Atlas.Reviews.Models.List_Info_List_Bean_Access;
7 end record;
8 type Review_List_Bean_Access is access all Review_List_Bean'Class;
9 end Atlas.Reviews.Beans;

Wemust now implement the Load operation that was described in the UMLmodel and we are going
to use our list query. For this, we use the ADO.Queries.Context to setup the query to retrieve
the list of reviews. A call to Set_Query indicates the query that will be used. Since that query needs
two parameters (first and last), we use the Bind_Param operation to give the two values. The list
of reviews is then retrieved easily by calling the Atlas.Reviews.Models.List operation that was
generated by Dynamo.

1 package body Atlas.Reviews.Beans is
2 ...
3 overriding
4 procedure Load (Into : in out Review_List_Bean;
5 Outcome : in out Ada.Strings.Unbounded.

Unbounded_String) is
6 Session : ADO.Sessions.Session := Into.Module.Get_Session;
7 Query : ADO.Queries.Context;
8 Count_Query : ADO.Queries.Context;
9 First : constant Natural := (Into.Page - 1) * Into.

Page_Size;
10 Last : constant Positive := First + Into.Page_Size;
11 begin
12 Query.Set_Query (Atlas.Reviews.Models.Query_List);
13 Count_Query.Set_Count_Query (Atlas.Reviews.Models.Query_List);
14 Query.Bind_Param (Name => "first", Value => First);
15 Query.Bind_Param (Name => "last", Value => Last);
16 Atlas.Reviews.Models.List (Into.Reviews, Session, Query);
17 Into.Count := ADO.Datasets.Get_Count (Session, Count_Query);
18 end Load;
19 end Atlas.Reviews.Beans;

Stephane Carrez 40

https://github.com/stcarrez/dynamo


Ada Web Application Programmer’s Guide 2022-08-02

3.6.3 Review list bean creation

The AWA framework must be able to create an instance of the Review_List_Bean type. For
this, we have to declare and implement a constructor function that allocates an instance of the
Review_List_Bean type and setup some pre-defined values. When the instance is returned, the list
of reviews is not loaded.

1 package body Atlas.Reviews.Beans is
2 ...
3 function Create_Review_List_Bean (Module : in Atlas.Reviews.Modules.

Review_Module_Access)
4 return Util.Beans.Basic.

Readonly_Bean_Access is
5 Object : constant Review_List_Bean_Access := new

Review_List_Bean;
6 begin
7 Object.Module := Module;
8 Object.Reviews_Bean := Object.Reviews'Access;
9 Object.Page_Size := 20;
10 Object.Page := 1;
11 Object.Count := 0;
12 return Object.all'Access;
13 end Create_Review_List_Bean;
14 end Atlas.Reviews.Beans;

The constructor function is then registered in the Atlas.Reviews.Modules package within the
Initialize procedure. This registration allows to give a name for this constructor function and be
able to specify it in the managed-bean bean declaration.

1 package body Atlas.Reviews.Modules is
2 ...
3 overriding
4 procedure Initialize (Plugin : in out Review_Module;
5 App : in AWA.Modules.Application_Access;
6 Props : in ASF.Applications.Config) is
7 begin
8 ...
9 Register.Register (Plugin => Plugin,
10 Name => "Atlas.Reviews.Beans.

Review_List_Bean",
11 Handler => Atlas.Reviews.Beans.

Create_Review_List_Bean'Access);
12 end Initialize;

Stephane Carrez 41



Ada Web Application Programmer’s Guide 2022-08-02

13 end Atlas.Reviews.Modules;

3.6.4 Review list bean declaration

Themanaged-bean XML declaration associates a name to a constructor function that will be called
when the name is needed. The scope of the Ada bean is set to request so that a new instance is
created for each HTTP GET request.

1 <managed-bean>
2 <description>The list of reviews</description>
3 <managed-bean-name>reviewList</managed-bean-name>
4 <managed-bean-class>Atlas.Reviews.Beans.Review_List_Bean</managed-

bean-class>
5 <managed-bean-scope>request</managed-bean-scope>
6 </managed-bean>

Two other scopes are allowed: session and application. The session scope indicates that the
new instance is created and associatedwith the user browsing session. It allows to share some instance
between several HTTP requests. Care must be made when designing the Ada bean instance because
concurrent HTTP requests can access andmodify the Ada bean concurrently.

The application scope associates the new instance globally to the application. It means the instance
is shared across all requests concurrently.

3.6.5 Listing the reviews: the XHTML facelet presentation file

To load the reviews to be displayed we will use a JSF 2.2 view action. The review list page has a
parameter page that indicates the page number to be displayed. The f:viewParam allows to retrieve
that parameter and configure the reviewList Ada bean with it. Then, the f:viewAction defines
the action that will be executed a�er the view parameters are extracted, validated and passed to the
Ada bean. In our case, we will call the load operation on our reviewList Ada bean.

1 <f:metadata>
2 <f:viewParam id='page' value='#{reviewList.page}' required="false"

/>
3 <f:viewAction action="#{reviewList.load}"/>
4 </f:metadata>

To summarize, the reviewList Ada bean is created, then configured for the pagination and filled with
the current page content by running our SQL query by running the Load procedure.

Stephane Carrez 42

http://docs.oracle.com/javaee/5/tutorial/doc/bnawq.html
http://tools.ietf.org/html/rfc2616#section-9.3
http://www.oracle.com/technetwork/articles/java/jsf22-1377252.html


Ada Web Application Programmer’s Guide 2022-08-02

The easy part is now to render the list of reviews. The XHTML file uses the component to iterate over
the list items and render each of them. At each iteration, the <h:list> component initializes the Ada
bean review to refer to the current row in the review list. We can then access each attribute defined in
the XML query mapping by using the property name of that attribute. For example review.title
returns the title property.

1 <h:list var="review" value="#{reviewList.reviews}">
2 <div class='review' id="p_#{review.id}">
3 <div class='review-title'>
4 <h2><a href="#{review.site}">#{review.title}</a></h2>
5 <ul class='review-info'>
6 <li><span>By #{review.reviewer_name}</span></li>
7 <li>
8 <h:outputText styleClass='review-date'
9 value="#{review.date}"
10 converter="dateConverter"/>
11 </li>
12 <h:panelGroup rendered="#{review.reviewer_id == user.id

}">
13 <li>
14 <a href="#{contextPath}/reviews/edit-review.

html?id=#{review.id}">
15 #{reviewMsg.review_edit_label}
16 </a>
17 </li>
18 <li>
19 <a href="#"
20 onclick="return ASF.OpenDialog(this, '

deleteDialog', '#{contextPath}/reviews/
forms/delete-review.html?id=#{review.id
}');">

21 #{reviewMsg.review_delete_label}
22 </a>
23 </li>
24 </h:panelGroup>
25 </ul>
26 </div>
27 <awa:wiki styleClass='review-text post-text' value="#{review.

text}" format="dotclear"/>
28 </div>
29 </h:list>

Stephane Carrez 43



Ada Web Application Programmer’s Guide 2022-08-02

3.6.6 Understanding the request flow

Let’s see the whole request flow to better understand what happens.

To display the list of reviews, the user’s browser makes an HTTP GET request to the page /reviews
/list.html. This pagemaps to the XHTML file web/reviews/list.xhtml that we created in the
Adding pages section.

The Ada Server Faces framework handles the request by first reading the XHTML file and building a tree
of components that represent the view to render. Within that tree of component, the <f:metadata>
component allows to make a pre-initialization of components and Ada beans before the component
tree is rendered.

For the pre-initialization, the reviewList Ada bean is created because it is referenced in an EL ex-
pression used by the <f:viewParam> component or by the <f:viewAction>. For this creation, the
Create_Review_List_Bean constructor that we registered is called. The page attribute is set on
the reviewList Ada bean if it was passed as a URL request parameter.

The load action is then called by Ada Server Faces which triggers execution of the Load procedure
and the current review list page is retrieved by executing the SQL query.

As soon as the load action terminates, the rendering of the component tree can be processed. The
reviewList Ada bean contains the information to display and the <h:list> component iterates
over the list and renders each row at a time.

Figure 10: Review list flow

Stephane Carrez 44

http://tools.ietf.org/html/rfc2616#section-9.3
https://github.com/stcarrez/ada-asf
https://github.com/stcarrez/ada-asf


Ada Web Application Programmer’s Guide 2022-08-02

4 AWA Core

4.1 Initialization

The AWA application is represented by the Application type which should be extended for the final
application to provide the modules and specific components of the final application.

The initialization of an AWA application is made in several steps represented by di�erent procedures
of the main Application type. The whole initialization is handled by the Initialize procedure
which gets a first set of configuration properties and a factory to build specific component.

The Initialize procedure will perform the following steps:

• It uses the factory to allocate the ASF lifecycle handler, the navigation handler, the security
manager, the OAuth manager, the exception handlers.

• It calls the Initialize_Components procedure to let the application register all the ASF com-
ponents. These components must be registered before any configuration file is read.

• It calls the Initialize_Config
• It calls the Initialize_Servlets procedure to allow the application to register all the servlet
instances used by the application.

• It calls the Initialize_Filters procedure to allow the application to register all the servlet
filter instances. The application servlets and filters must be registered before reading the global
configuration file.

• It loads the global application configuration by reading the awa.xml file. By reading this config-
uration, some global configuration is established on the servlets, filters.

• It calls the Initialize_Modules procedure so that all the application modules can be regis-
tered, configured and initialized. Eachmodule brings its own component, servlet and filter. They
are configured by their own XML configuration file.

• It loads the module application configuration by reading the XML files described by the app.
config.plugins configuration. This last step allows the application to setup and update the
configuration of all modules that have been registered.

4.2 Configuration

The following global configuration parameter are defined:

Name Description

awa_url_scheme The application URL scheme to use when building URL.

#{empty app_url_scheme ? “http://” : app_url_scheme}

Stephane Carrez 45



Ada Web Application Programmer’s Guide 2022-08-02

Name Description

awa_url_host The application URL host to use when building URL.

#{empty app_url_host ? “localhost” : app_url_host}

awa_url_port The application TCP port to use when building URL.

#{empty app_url_port ? “:8080” : app_url_port}

app_url_base The application URL base to use when building URL.

#{empty app_url_base ? “http://localhost:8080” : app_url_base}

app_oauth_url_base

http://localhost:8080

view.ext Defines the extension used for Ada Server Faces presentation pages.

.html

view.dir Defines a list of paths separated by “;” where the XHTML files are
searched. The default searches for the “web” directory in the
application search paths.

#{fn:composePath(app_search_dirs,“web”)}

content-type.default Defines the default content type for the file servlet.

text/plain

ado.queries.load Controls whether the database query definitions are loaded.

true

ado.queries.paths Defines a list of paths separated by “;” where the database query
files are searched. The default searches for the “db” directory in the
application search paths.

#{fn:composePath(app_search_dirs,“db”)}

bundle.dir Defines a list of paths separated by “;” where the resource bundle
files are searched. The default searches for the “bundles” directory
in the application search paths.

#{fn:composePath(app_search_dirs,“bundles”)}

app.modules.dir Defines a list of paths separated by “;” where the module
configuration files are searched. The default searches for the
“config” directory in the application search paths.

Stephane Carrez 46

https://github.com/stcarrez/ada-asf


Ada Web Application Programmer’s Guide 2022-08-02

Name Description

#{fn:composePath(app_search_dirs,“config”)}

4.3 AWAModules

A module is a so�ware component that can be integrated in the web application. The module can
bring a set of service APIs, some Ada beans and some presentation files. The AWA framework allows
to configure various parts of a module when it is integrated in an application. Some modules are
designed to be re-used by several applications (for example amailmodule, a usersmodule, . . . ). Other
modules could be specific to an application. An application will be made of several modules, some will
be generic some others specific to the application.

4.3.1 Registration

The module should have only one instance per application and it must be registered when the applica-
tion is initialized. The module instance should be added to the application record as follows:

1 type Application is new AWA.Applications.Application with record
2 Xxx : aliased Xxx_Module;
3 end record;

The application record must override the Initialize_Module procedure and it must register the
module instance. This is done as follows:

1 overriding
2 procedure Initialize_Modules (App : in out Application) is
3 begin
4 Register (App => App.Self.all'Access,
5 Name => Xxx.Module.NAME,
6 URI => "xxx",
7 Module => App.User_Module'Access);
8 end Initialize_Modules;

Themodule is registered under a unique name. That name is used to load the module configuration.

4.3.2 Configuration

Themodule is configured by using an XML or a properties file. The configuration file is used to define:

Stephane Carrez 47



Ada Web Application Programmer’s Guide 2022-08-02

• the Ada beans that the module defines and uses,
• the events that the module wants to receive and the action that must be performed when the
event is posted,

• the permissions that the module needs and how to check them,
• the navigation rules which are used for the module web interface,
• the servlet and filter mappings used by the module

The module configuration is located in the config directory and must be the name of the module
followed by the file extension (example: module-name.xml or module-name.properties).

4.4 AWA Permissions

The AWA.Permissions framework defines and controls the permissions used by an application to verify
and grant access to the data and application service. The framework provides a set of services and API
that helps an application in enforcing its specific permissions. Permissions are verified by a permission
controller which uses the service context to have information about the user and other context. The
framework allows to use di�erent kinds of permission controllers. The Entity_Controller is the
default permission controller which uses the database and an XML configuration to verify a permission.

4.4.1 Declaration

To be used in the application, the first step is to declare the permission. This is a static definition of the
permission that will be used to ask to verify the permission. The permission is given a unique name
that will be used in configuration files:

1 with Security.Permissions;
2 ...
3 package ACL_Create_Post is new Security.Permissions.Definition ("blog-

create-post");

4.4.2 Checking for a permission

A permission can be checked in Ada as well as in the presentation pages. This is done by using the
Check procedure and the permission definition. This operation acts as a barrier: it does not return
anything but returns normally if the permission is granted. If the permission is denied, it raises the
NO_PERMISSION exception.

Several Check operation exists. Some require no argument and some others need a context such as
some entity identifier to perform the check.

Stephane Carrez 48



Ada Web Application Programmer’s Guide 2022-08-02

1 with AWA.Permissions;
2 ...
3 AWA.Permissions.Check (Permission => ACL_Create_Post.Permission,
4 Entity => Blog_Id);

4.4.3 Configuring a permission

The AWA.Permissions framework supports a simple permissionmodel The application configuration
file must provide some information to help in checking the permission. The permission name is
referenced by the name XML entity. The entity-type refers to the database entity (ie, the table) that
the permission concerns. The sql XML entity represents the SQL statement that must be used to verify
the permission.

1 <entity-permission>
2 <name>blog-create-post</name>
3 <entity-type>blog</entity-type>
4 <description>Permission to create a new post.</description>
5 <sql>
6 SELECT acl.id FROM acl
7 WHERE acl.entity_type = :entity_type
8 AND acl.user_id = :user_id
9 AND acl.entity_id = :entity_id
10 </sql>
11 </entity-permission>

4.4.4 Adding a permission

Adding a permission means to create an ACL database record that links a given database entity to the
user. This is done easily with the Add_Permission procedure:

1 with AWA.Permissions.Services;
2 ...
3 AWA.Permissions.Services.Add_Permission (Session => DB,
4 User => User,
5 Entity => Blog);

Stephane Carrez 49



Ada Web Application Programmer’s Guide 2022-08-02

4.4.5 Data Model

4.4.6 Queries

4.4.7 Queries

Name Description

check-entity-
permission

Get the permission for a user and an entity

remove-permission Delete the permission associated with a user and an object

remove-entity-
permission

Delete all the permission associated with an object

remove-user-
permission

Delete all the permission associated with a user

4.5 AWA Events

The AWA.Events package defines an event framework for modules to post events and have Ada bean
methods be invoked when these events are dispatched. Subscription to events is done through config-
uration files. This allows to configure the modules and integrate them together easily at configuration
time.

Stephane Carrez 50



Ada Web Application Programmer’s Guide 2022-08-02

4.5.1 Declaration

Modules define the events that they can generate by instantiating the Definition package. This is a
static definition of the event. Each event is given a unique name.

1 with AWA.Events.Definition;
2 ...
3 package Event_New_User is new AWA.Events.Definition ("new-user");

4.5.2 Posting an event

The module can post an event to inform other modules or the system that a particular action occurred.
Themodule creates the event instance of type Module_Event and populates that event with useful
properties for event receivers.

1 with AWA.Events;
2 ...
3 Event : AWA.Events.Module_Event;
4 Event.Set_Event_Kind (Event_New_User.Kind);
5 Event.Set_Parameter ("email", "harry.potter@hogwarts.org");

Themodule will post the event by using the Send_Event operation.

1 Manager.Send_Event (Event);

4.5.3 Receiving an event

Modules or applications interested by a particular event will configure the event manager to dispatch
the event to an Ada bean event action. The Ada bean is an object that must implement a procedure
that matches the prototype:

1 type Action_Bean is new Util.Beans.Basic.Readonly_Bean ...;
2 procedure Action (Bean : in out Action_Bean;
3 Event : in AWA.Events.Module_Event'Class);

The Ada beanmethod and object are registered as other Ada beans.

The configuration file indicates how to bind the Ada bean action and the event together. The action is
specified using an EL Method Expression (See Ada EL or JSR 245).

1 <on-event name="new_user">
2 <action>#{ada_bean.action}</action>

Stephane Carrez 51

https://github.com/stcarrez/ada-el


Ada Web Application Programmer’s Guide 2022-08-02

3 </on-event>

4.5.4 Event queues and dispatchers

The AWA.Events framework posts events on queues and it uses a dispatcher to process them. There
are two kinds of dispatchers:

• Synchronous dispatcher process the event when it is posted. The task which posts the event
invokes the Ada bean action. In this dispatching mode, there is no event queue. If the action
method raises an exception, it will however be blocked.

• Asynchronous dispatcher are executed by dedicated tasks. The event is put in an event queue. A
dispatcher task processes the event and invokes the action method at a later time.

When the event is queued, there are two types of event queues:

• A Fifo memory queue manages the event and dispatches them in FIFO order. If the application is
stopped, the events present in the Fifo queue are lost.

• A persistent event queue manages the event in a similar way as the FIFO queue but saves them
in the database. If the application is stopped, events that have not yet been processed will be
dispatched when the application is started again.

Stephane Carrez 52



Ada Web Application Programmer’s Guide 2022-08-02

4.5.5 Data Model

4.6 AWA Commands

The AWA.Commands package provides a simple framework with commands that allow to start, stop,
configure andmanage the web application. It is also possible to provide your own commands. The
command framework handles the parsing of command line options, identification of the command to
execute and execution of the selected command.

4.6.1 Command Usage

SYNOPSIS

driver [-v] [-vv] [-vvv] [-c config-file ] command [-k file ] [ -d dir ] [ -p password ] [–password password ]
[–passfile file ] [–passenv name ] [–passfd fd ] [–passask] [–passcmd cmd ] [–wallet-key-file file ]

DESCRIPTION

TheAWA.Commands.Drivers framework integrates theAdaKeystore support toaccess somesensitive
configuration information such as passwords, database connection strings, API secret keys. The use

Stephane Carrez 53



Ada Web Application Programmer’s Guide 2022-08-02

of the Ada Keystore storage is optional. It is enabled when the -k _file_ option is specified. When
such secure storage is used, a primary password to unlock the keystore is necessary. Passwords are
retrieved using one of the following options:

• by reading a file that contains the password,
• by looking at an environment variable,
• by using a command line argument,
• by getting the password through the ssh-askpass(1) external command,
• by running an external command,
• by using a GPG private key,
• by asking interactively the user for the password,
• by asking through a network socket for the password.

When the Ada Keystore is used, it is global to all the applications that are registered in the Web server
container. To allow to di�erentiate application specific configuration, each configuration parameter is
prefixed by the application name.

To create and update the keystore file, it is necessary to use the akt(1) tool. The tool provides many
commands for the creation, insertion, removal and update of content that is stored in the keystore file.

If the keystore file was locked by using GPG, it is not necessary to specify any specific option to unlock
the keystore. All is needed is the availability of the gpg2(1) command with the private key to unlock the
keystore.

The server global configuration file that is read with the -c config-file option can contain the
following configuration:

Name Description

keystore-path The path to the global keystore file

keystore-masterkey-path The path of the file that contains the master keys

keystore-password-path The path of the file that contains the keystore password

gpg-encrypt When GPG is used, the GPG command to encrypt some content

gpg-decrypt When GPG is used, the GPG command to decrypt some content

gpg-list-keys When GPG is used, the GPG command to list the available GPG keys

OPTIONS

The following options are recognized by the command driver:

Stephane Carrez 54



Ada Web Application Programmer’s Guide 2022-08-02

-V

Prints the application version.

-v

Enable the verbose mode.

-vv

Enable debugging output.

-vvv

Enable debugging output.

-c config-file

Defines the path of the global server configuration file.

-k file

Specifies the path of the keystore file to open.

-p password

The keystore password is passed within the command line. Using this method is convenient but is not
safe.

–passenv envname

The keystore password is passed within an environment variable with the given name. Using this
method is considered safer but still provides some security leaks.

–passfile path

The keystore password is passed within a file that is read. The file must not be readable or writable by
other users or group: its modemust be r??——. The directory that contains the file must also satisfy
the not readable by other users or groupmembers, This method is safer.

–passfd fd

The keystore password is passedwithin a pipewhose file descriptor number is given. The file descriptor
is read to obtain the password. This method is safer.

–passask

The keystore password is retrieved by the running the external tool ssh-askpass(1) which will ask the
password through either KDE, Gnome or another desktop interactive application. The password is
retrieved through a pipe that the driver sets while launching the command.

–passcmd cmd

Stephane Carrez 55



Ada Web Application Programmer’s Guide 2022-08-02

The keystore password is retrievedby the running the external commanddefined in cmd. The command
should print the password on its standard outputwithout endof line. Thepassword is retrieved through
a pipe that the driver sets while launching the command.

–wallet-key-file file

Defines the path of a file which contains the wallet master key file.

COMMANDS

The start command

driver start [–management-portPORT] [–portPORT] [–connectionCOUNT] [–uploadDIR] [–tcp-no-delay]
[–daemon] [–keystore PATH]

The start command allows to start the server and all applications that are registered to the web
container. When a keystore is specified, it is first unlocked by using one of the unlock mechanism
(password, GPG, . . . ). Then, each application is configured by using its own configuration file and a
subset of the keystore secured configuration. Once each application is configured, the web server
container is started to listen to the TCP/IP port defined by the --port=PORT option. Applications are
then started and they can serve HTTP requests through the web server container.

At the same time, a management port is created and used exclusively by the stop command to stop
the web server container. The start command will wait on that management port for the stop
command to be executed. Themanagement port is configured by the --management=PORT option.
The management port is local to the host and cannot be accessed remotely.

When the --daemon option is used, the server will first put itself in the background. This option is
supported only under someUnix systems like GNU/Linux and FreeBSD andmore generally every system
where the daemon(3) C-library call is supported. On other systems, this option has no e�ect.

The --tcp-no-delay option is supported for recent version of AdaWeb Server and configure the web
server to use the TCP_NO_DELAY option of the TCP/IP stack (strongly recommended).

The --upload=DIR option indicates to the web server container the directory that can be used to store
temporarily the uploaded files that the server receives.

The --connection=COUNT option controls the maximum number of active HTTP requests that the
server can handle.

The setup command

Stephane Carrez 56



Ada Web Application Programmer’s Guide 2022-08-02

driver setup [–management-port PORT] [–port PORT] [–connection COUNT] [–upload DIR] [–tcp-no-
delay] [–daemon] [–keystore PATH] NAME

The setup command is very close to the start command but it starts the Setup Application to
configure the application by using a web browser.

The stop command

driver stop [–management-port PORT] [–keystore PATH]

The stop command is used to inform a running web server container to stop. Themanagement port is
used to connect to the web server container and stop it. The management port is local to the host and
cannot be accessed remotely.

The management port is configured with the --management-port=PORT option.

The list command

driver list [–application NAME] [–keystore PATH] [–users] [–jobs] [–sessions] [–tables]

The list command is intended to help in looking at the application database and see some important
information. Because the database is specific to each application, it may be necessary to indicate the
application name by using the --application=NAME option.

The --tables option triggers the list of database tables with the number of entries they contain.

The --users option triggers the list of users that are registered in the application.

The --sessions option triggers the list of user connection sessions.

The --jobs option triggers the list of jobs that have been created and scheduled.

The info command

driver info [–application NAME] [–keystore PATH] [–long-lines]

The info command reports the current configuration used by the application. The configuration
is extracted from the AWA default XML configuration files and can be overriden by the application
specific configuration. The command allows to see what is the actual configuration. The configuration
is printed with the configuration name and its associated value.

The list of configuration parameters are grouped in several categories:

• Database configuration gives the configuration properties for the database configuration.
• Server faces configuration lists the configuration use by the Ada Servlets and Ada Server
Faces.

Stephane Carrez 57

https://github.com/stcarrez/ada-asf
https://github.com/stcarrez/ada-asf


Ada Web Application Programmer’s Guide 2022-08-02

• AWA Application lists the core AWA configuration properties.

Depending on whether a module is used by the application, a number of modules are listed with their
configuration.

The --long-lines option triggers the list of database tables with the number of entries they contain.

4.6.2 Integration

The AWA.Commands framework is split in several generic packages that must be instantiated. The AWA
.Commands.Drivers generic package is the primary package that must be instantiated. It provides
the core command line driver framework on top of which the commands are implemented. The
instantiationneeds twoparameter: thenameof theapplicationand the typeof thewebserver container.
When using Ada Web Server, the following instantiation example can be used:

1 with Servlet.Server.Web;
2 with AWA.Commands.Drivers;
3 ...
4 package Server_Commands is
5 new AWA.Commands.Drivers
6 (Driver_Name => "atlas",
7 Container_Type => Servlet.Server.Web.AWS_Container);

The Driver_Name is used to print the name of the command when some usage or help is printed. The
Container_Type is used to declare the web container onto which applications are registered and
which provides the web server core implementation. The web server container instance is available
through the WS variable defined in the Server_Commands package.

Once the command driver is instantiated, it is necessary to instantiate each command that you wish to
integrate in the final application. For example, to integrate the start command, you will do:

1 with AWA.Commands.Start;
2 ...
3 package Start_Command is new AWA.Commands.Start (Server_Commands);

To integrate the stop command, you will do:

1 with AWA.Commands.Stop;
2 ...
3 package Stop_Command is new AWA.Commands.Stop (Server_Commands);

The instantiation of one of the command, automatically registers the command to the command driver.

Stephane Carrez 58



Ada Web Application Programmer’s Guide 2022-08-02

5 Users Module

The usersmodule manages the creation, update, removal and authentication of users in an applica-
tion. The module provides the foundations for user management in a web application.

A user can register himself by using a subscription form. In that case, a verification mail is sent and the
user has to follow the verification link defined in the mail to finish the registration process. The user
will authenticate using a password.

A user can also use anOAuth/OpenID account and be automatically authenticated and registered to the
application. By using an external authentication server, passwords are not stored in the application.

A user can have one or several permissions that allow to protect the application data. User permissions
are managed by the Permissions.Module.

5.1 Integration

The User_Module manages the creation, update, removal of users in an application. It provides
operations that are used by the user beans or other services to create and update wiki pages. An
instance of the User_Modulemust be declared and registered in the AWA application. Themodule
instance can be defined as follows:

1 type Application is new AWA.Applications.Application with record
2 User_Module : aliased AWA.Users.Modules.User_Module;
3 end record;

And registered in the Initialize_Modules procedure by using:

1 Register (App => App.Self.all'Access,
2 Name => AWA.Users.Modules.NAME,
3 Module => App.User_Module'Access);

5.2 OAuth Authentication Flow

The OAuth/OpenID authentication flow is implemented by using two servlets that participate in the
authentication. A first servlet will start the OAuth/OpenID authentication by building the request that
the user must use to authenticate through the OAuth/OpenID authorization server. This servlet is im-
plemented by the AWA.Users.Servlets.Request_Auth_Servlet type. The servlet will respond
to an HTTP GET request and it will redirect the user to the authorization server.

Stephane Carrez 59



Ada Web Application Programmer’s Guide 2022-08-02

Figure 11: OAuth Authentication Flow

The user will be authenticated by the OAuth/OpenID authorization server and when s/he grants the
application to access his or her account, a redirection is made to the second servlet. The second
servlet is implemented by AWA.Users.Servlets.Verify_Auth_Servlet. It is used to validate the
authentication result by checking its validity with the OAuth/OpenID authorization endpoint. During
this step, we can retrieve someminimal information that uniquely identifies the user such as a unique
identifier that is specific to the OAuth/OpenID authorization server. It is also possible to retrieve the
user’s name and email address.

These two servlets are provided by the User_Module and they are registered under the openid-auth
name for the first step and under the openid-verify name for the second step.

5.3 Configuration

The usersmodule uses a set of configuration properties to configure the OpenID integration.

Name Description

users.server_id The server id when several instances are used.

1

Stephane Carrez 60



Ada Web Application Programmer’s Guide 2022-08-02

Name Description

users.auth_key An authentication key used to sign the authentication cookies.

8ef60aad66977c68b12f4f8acab5a4e00a77f6e8

openid.realm The REALM URL used by OpenID providers to verify the validity of
the verification callback.

#{app_url_base}/auth

openid.callback_url The verification callback URI used by the OpenID provider to
redirect the user a�er authentication.

#{app_url_base}/auth/verify

openid.success_url The URI where the user is redirected a�er a successful
authentication.

#{contextPath}/workspaces/main.html

auth.url.orange Orange OpenID access point

https://openid.orange.fr

auth.provider.orange Auth provider to use for Orange

openid

auth.url.yahoo Yahoo! OpenID access point

https://api.login.yahoo.com/oauth2/request_auth

auth.provider.yahoo Auth provider to use for Yahoo!

yahoo

auth.url.google Google OpenID access point

https://www.google.com/accounts/o8/id

auth.provider.google Auth provider to use for Google

openid

auth.url.facebook Facebook OAuth access point

https://www.facebook.com/dialog/oauth

auth.provider.facebook Auth provider to use for Facebook

facebook

facebook.callback_url Facebook verify callback

Stephane Carrez 61



Ada Web Application Programmer’s Guide 2022-08-02

Name Description

#{app_oauth_url_base}#{contextPath}/auth/verify

facebook.request_url Facebook request OAuth token access point

https://graph.facebook.com/oauth/access_token

facebook.scope Facebook permission scope

public_profile,email

facebook.client_id Facebook API client ID

#{app_facebook_client_id}

facebook.secret Facebook API secret

#{app_facebook_secret}

auth.url.google-plus Google+ OAuth access point

https://accounts.google.com/o/oauth2/auth

auth.provider.google-plus Auth provider to use for Google+

google-plus

google-plus.issuer Google+ issuer identification

accounts.google.com

google-plus.callback_url Google+ verify callback

#{app_oauth_url_base}#{contextPath}/auth/verify

google-plus.request_url Google+ request OAuth token access point

https://accounts.google.com/o/oauth2/token

google-plus.scope Google+ permission scope

openid profile email

google-plus.client_id Google+ API client ID

#{app_google_plus_client_id}

google-plus.secret Google+ API secret

#{app_google_plus_secret}

auth-filter.redirect URI to redirect to the login page

#{contextPath}/auth/login.html

Stephane Carrez 62



Ada Web Application Programmer’s Guide 2022-08-02

Name Description

verify-filter.redirect URI to redirect to the login page

#{contextPath}/auth/login.html

5.4 Ada Beans

Several bean types are provided to represent andmanage the users. The usermodule registers the bean
constructors when it is initialized. To use them, onemust declare a bean definition in the application
XML configuration.

Name Description

login This bean is used by the login form

register This bean is used by the registration form

resetPassword This bean is used by the reset password form

lostPassword This bean is used by the lost password form

logout This bean is used by the logout process

user This bean allows to provide information about the current logged user.

Stephane Carrez 63



Ada Web Application Programmer’s Guide 2022-08-02

5.5 Datamodel

Stephane Carrez 64



Ada Web Application Programmer’s Guide 2022-08-02

6 Jobs Module

The jobsmodule defines a batch job framework for modules to perform and execute long running and
deferred actions. The jobsmodule is intended to help web application designers in implementing
end to end asynchronous operation. A client schedules a job and does not block nor wait for the
immediate completion. Instead, the client asks periodically or uses other mechanisms to check for the
job completion.

6.1 Integration

To be able to use the jobsmodule, you will need to add the following line in your GNAT project file:

1 with "awa_jobs";

An instance of the Job_Modulemust be declared and registered in the AWA application. The module
instance can be defined as follows:

1 with AWA.Jobs.Modules;
2 ...
3 type Application is new AWA.Applications.Application with record
4 Job_Module : aliased AWA.Jobs.Modules.Job_Module;
5 end record;

And registered in the Initialize_Modules procedure by using:

1 Register (App => App.Self.all'Access,
2 Name => AWA.Jobs.Modules.NAME,
3 Module => App.Job_Module'Access);

6.2 Writing a job

A new job type is created by implementing the Execute operation of the abstract Job_Type tagged
record.

1 type Resize_Job is new AWA.Jobs.Job_Type with ...;

TheExecuteproceduremust be implemented. It should use theGet_Parameter functions to retrieve
the job parameters and perform the work. While the job is being executed, it can save result by using
the Set_Result operations, save messages by using the Set_Message operations and report the
progress by using Set_Progress. It may report the job status by using Set_Status.

Stephane Carrez 65



Ada Web Application Programmer’s Guide 2022-08-02

1 procedure Execute (Job : in out Resize_Job) is
2 begin
3 Job.Set_Result ("done", "ok");
4 end Execute;

6.3 Registering a job

The jobsmodule must be able to create the job instance when it is going to be executed. For this, a
registration package must be instantiated:

1 package Resize_Def is new AWA.Jobs.Definition (Resize_Job);

and the job definition must be added:

1 AWA.Jobs.Modules.Register (Resize_Def.Create'Access);

6.4 Scheduling a job

To schedule a job, declare an instance of the job to execute and set the job specific parameters. The
job parameters will be saved in the database. As soon as parameters are defined, call the Schedule
procedure to schedule the job in the job queue and obtain a job identifier.

1 Resize : Resize_Job;
2 ...
3 Resize.Set_Parameter ("file", "image.png");
4 Resize.Set_Parameter ("width", "32");
5 Resize.Set_Parameter ("height, "32");
6 Resize.Schedule;

6.5 Checking for job completion

A�er a job is scheduled, a unique identifier is allocated that allows to identify it. It is possible to query
the status of the job by using the Get_Job_Status function:

1 Status : AWA.Jobs.Models.Job_Status_Type
2 := AWA.Jobs.Services.Get_Job_Status (Resize.Get_Identifier);

Stephane Carrez 66



Ada Web Application Programmer’s Guide 2022-08-02

6.6 Job Service

The AWA.Jobs.Services package defines the type abstractions and the core operation to define a
job operation procedure, create and schedule a job and perform the job work when it is scheduled.

6.7 Ada Beans

Name Description

jobHandler The jobHandler is the bean that is created to execute a job.

Stephane Carrez 67



Ada Web Application Programmer’s Guide 2022-08-02

6.8 Data Model

Stephane Carrez 68



Ada Web Application Programmer’s Guide 2022-08-02

7 Mail Module

The mailmodule allows an application to format and send a mail to users. This module does not
define any web interface. It provides a set of services andmethods to send amail when an event is
received. All this is done through configuration. The module defines a set of specific ASF components
to format and prepare the email.

7.1 Integration

To be able to use the mailmodule, you will need to add the following line in your GNAT project file:

1 with "awa_mail";

The Mail_Module type represents the mail module. An instance of the mail module must be declared
and registered when the application is created and initialized. The module instance can be defined as
follows:

1 type Application is new AWA.Applications.Application with record
2 Mail_Module : aliased AWA.Mail.Modules.Mail_Module;
3 end record;

And registered in the Initialize_Modules procedure by using:

1 Register (App => App.Self.all'Access,
2 Name => AWA.Mail.Modules.NAME,
3 Module => App.Mail_Module'Access);

7.2 Configuration

The mailmodule needs some properties to configure the SMTP server.

Configuration Default Description

mail.smtp.host localhost Defines the SMTP server host name

mail.smtp.port 25 Defines the SMTP connection port

mail.smtp.enable 1 Defines whether sending email is enabled or not

Stephane Carrez 69



Ada Web Application Programmer’s Guide 2022-08-02

7.3 Sending an email

Sending an email when an event is posted can be done by using an XML configuration. Basically, the
mailmodule uses the event framework provided by AWA. The XML definition looks like:

1 <on-event name="user-register">
2 <action>#{userMail.send}</action>
3 <property name="template">/mail/register-user-message.xhtml</property

>
4 </on-event>

With this definition, the mail template /mail/register-user-message.xhtml is formatted by
using the event and application context when the user-register event is posted.

7.4 Components

The AWA.Mail.Components package defines several UI components that represent a mail message
in an ASF view. The components allow the creation, formatting and sending of a mail message using
the samemechanism as the application presentation layer. Example:

1 <f:view xmlns="mail:http://code.google.com/p/ada-awa/mail">
2 <mail:message>
3 <mail:subject>Welcome</mail:subject>
4 <mail:to name="Iorek Byrnison">Iorek.Byrnison@svalbard.com</mail:to

>
5 <mail:body>
6 ...
7 </mail:body>
8 <mail:attachment value="/images/mail-image.jpg"
9 fileName="image.jpg"
10 contentType="image/jpg"/>
11 </mail:message>
12 </f:view>

When the view which contains these components is rendered, a mail message is built and initialized
by rendering the inner components. The body and other components can use other application UI
components to render useful content. The email is send a�er themail:messagehas finished to render
its inner children.

The mail:subject component describes the mail subject.

The mail:to component define the mail recipient. There can be several recepients.

The mail:body component contains the mail body.

Stephane Carrez 70



Ada Web Application Programmer’s Guide 2022-08-02

The mail:attachment component allows to include some attachment.

7.4.1 Mail Recipients

The AWA.Mail.Components.Recipients package defines the UI components to represent the To, From,
Cc and Bcc recipients.

The mail message is retrieved by looking at the parent UI component until a UIMailMessage compo-
nent is found. Themail message recipients are initialized during the render response JSF phase, that is
when Encode_End are called.

7.4.2 Mail Messages

The AWA.Mail.Components.Messages package defines the UI components to represent the email
message with its recipients, subject and body.

The mail message is retrieved by looking at the parent UI component until a UIMailMessage compo-
nent is found. Themail message recipients are initialized during the render response JSF phase, that is
when Encode_End are called.

The <mail:body> component holds the message body. This component can include a facelet labeled
alternative inwhich case itwill be used tobuild thetext/plainmailmessage. Thedefault content
type for <mail:body> is text/html but this can be changed by using the type attribute.

1 <mail:body type='text/html'>
2 <facet name='alternative'>
3 The text/plain mail message.
4 </facet>
5 The text/html mail message.
6 </mail:body>

7.4.3 Mail Attachments

The AWA.Mail.Components.Attachments package defines the UI components to represent a mail
attachment. The mail attachment can be an external file or may be provided by an Ada bean object.

7.5 Ada Beans

Stephane Carrez 71



Ada Web Application Programmer’s Guide 2022-08-02

Name Description

userMail Bean used to send an email with a specific template to the user.

Stephane Carrez 72



Ada Web Application Programmer’s Guide 2022-08-02

8 Workspaces Module

The workspaces plugin defines a workspace area for other plugins. The workspace is intended to
link together all the data objects that an application manages for a given user or group of users. A
workspace is a possible mechanism to provide and implement multi-tenancy in a web application. By
using the workspace plugin, application data from di�erent customers can be kept separate from each
other in the same database.

8.1 Events

Theworkspacesmodule provides several events that are posted when some action are performed.

8.1.1 invite-user

This event is posted when an invitation is created for a user. The event can be used to send the
associated invitation email to the invitee. The event contains the following attributes:

key email namemessage inviter

8.1.2 accept-invitation

This event is posted when an invitation is accepted by a user.

8.2 Ada Beans

8.2.1 Beans

Name Description

workspace This bean allows to perform some general workspace actions

memberList The list of workspace members.

inviteUser The invitation bean.

workspaceMember The workspace member bean.

8.2.2 Permissions

Stephane Carrez 73



Ada Web Application Programmer’s Guide 2022-08-02

Name Entity type Description

workspace-
create

awa_workspace Permission to create a workspace.

workspace-
invite-user

awa_workspace Permission to invite a user in the workspace.

workspace-
delete-user

awa_workspace Permission to delete a user from the workspace.

workspaces-
create

awa_workspace

8.2.3 Configuration

Name Description

workspaces.permissions_list

blog-create,wiki-space-create

workspaces.allow_workspace_create

0

Stephane Carrez 74



Ada Web Application Programmer’s Guide 2022-08-02

8.3 Data Model

Stephane Carrez 75



Ada Web Application Programmer’s Guide 2022-08-02

9 Storages Module

The storagesmodule provides a set of storage services allowing an application to store data files,
documents, images in a persistent area. The persistent store can be on a file system, in the database or
provided by a remote service such as Amazon Simple Storage Service.

9.1 Integration

To be able to use the storagesmodule, you will need to add the following line in your GNAT project
file:

1 with "awa_storages";

The Storage_Module type represents the storagemodule. An instance of the storage module must
be declared and registered when the application is created and initialized. The storage module is asso-
ciated with the storage service which provides and implements the storage management operations.
An instance of the Storage_Modulemust be declared and registered in the AWA application. The
module instance can be defined as follows:

1 with AWA.Storages.Modules;
2 ...
3 type Application is new AWA.Applications.Application with record
4 Storage_Module : aliased AWA.Storages.Modules.Storage_Module;
5 end record;

And registered in the Initialize_Modules procedure by using:

1 Register (App => App.Self.all'Access,
2 Name => AWA.Storages.Modules.NAME,
3 Module => App.Storage_Module'Access);

9.2 Permissions

Name Entity type Description

folder-create awa_workspace

storage-create awa_workspace

storage-delete awa_workspace

Stephane Carrez 76



Ada Web Application Programmer’s Guide 2022-08-02

9.3 Configuration

The storagesmodule defines the following configuration parameters:

Name Description

storages.storage_root The path of the directory that contains storage files stored on the
local filesystem.

storage

storages.tmp_storage_root The path of the directory that contains temporary storage files on
the local filesystem.

tmp

storages.database_max_size Themaximum size of documents store in the database storage.

100000

9.4 Creating a storage

A data in the storage is represented by a Storage_Ref instance. The data itself can be physically
stored in a file system (FILEmode), in the database (DATABASEmode) or on a remote server (URL
mode). To put a file in the storage space, first create the storage object instance:

1 Data : AWA.Storages.Models.Storage_Ref;

Then setup the storage mode that you want. The storage service uses this information to save the data
in a file, in the database or in a remote service (in the future). To save a file in the store, we can use the
Save operation of the storage service. It will read the file and put in in the corresponding persistent
store (the database in this example).

1 Service.Save (Into => Data, Path => Path_To_The_File,
2 Storage => AWA.Storages.Models.DATABASE);

Upon successful completion, the storage instance Datawill be allocated a unique identifier that can
be retrieved by Get_Id or Get_Key.

9.5 Getting the data

Several operations are defined to retrieve the data. Each of them has been designed to optimize the
retrieval and

Stephane Carrez 77



Ada Web Application Programmer’s Guide 2022-08-02

• The data can be retrieved in a local file. This mode is useful if an external program must be
launched and be able to read the file. If the storage mode of the data is FILE, the path of the file
on the storage file system is used. For other storage modes, the file is saved in a temporary file.
In that case the Store_Local database table is used to track such locally saved data.

• The data can be returned as a stream. When the application has to read the data, opening a read
stream connection is the most e�icient mechanism.

9.6 Local file

To access the data by using a local file, wemust define a local storage reference:

1 Data : AWA.Storages.Models.Store_Local_Ref;

and use the Load operation with the storage identifier. When loading locally we also indicate whether
the file will be read or written. A file that is in READmode can be shared by several tasks or processes.
A file that is in WRITEmode will have a specific copy for the caller. An optional expiration parameter
indicate when the local file representation can expire.

1 Service.Load (From => Id, Into => Data, Mode => READ, Expire => ONE_DAY
);

Once the load operation succeeded, the data is stored on the file system and the local path is obtained
by using the Get_Path operation:

1 Path : constant String := Data.Get_Path;

9.7 Storage Service

The Storage_Service provides the operations to access and use the persisent storage. It controls the
permissions that grant access to the service for users.

Other modules can be notified of storage changes by registering a listener on the storage module.

9.8 Store Service

The AWA.Storages.Stores package defines the interface that a store must implement to be able to
save and retrieve a data content. The store can be a file system, a database or a remote store service.

Stephane Carrez 78



Ada Web Application Programmer’s Guide 2022-08-02

9.8.1 Database store

The AWA.Storages.Stores.Databases store uses the database to save a data content. The data is
saved in a specific table in a database blob column. The database store uses another store service to
temporarily save the data content in a local file when the application needs a file access to the data.

9.8.2 File System store

The AWA.Storages.Stores.Files store uses the file system to save a data content. Files are stored
in a directory tree whose path is created from the workspace identifier and the storage identifier. The
layout is such that files belonged to a given workspace are stored in the same directory sub-tree.

The root directory of the file system store is configured through the storage_root and tmp_storage_root
configuration properties.

9.9 Ada Beans

Name Description

storageFolder This bean allows to create a storage folder.

uploadFile This bean allows to upload a new file in the storage space.

folderList This bean gives the list of storage folders in the workspace.

storageList This bean gives the list of storage files associated with a given folder.

storageInfo This bean gives some information about a document and its folder.

AWA.Storages.Models.Storage_Info

The list of documents for a given folder.

Type Ada Name Description

Identifier id the storage identifier.

String name the file name.

Date create_date the file creation date.

String uri the file storage URI.

AWA.Storages.Models.Storage_Type storage the file storage URI.

String mime_type the file mime type.

Stephane Carrez 79



Ada Web Application Programmer’s Guide 2022-08-02

Type Ada Name Description

Integer file_size the file size.

Boolean is_public whether the document is public or not.

String user_name the user name who uploaded the document.

Integer thumb_width the image thumbnail width (or 0).

Integer thumb_height the image thumbnail height (or 0).

Identifier thumbnail_id the image thumbnail identifier.

AWA.Storages.Models.Folder_Info

The list of folders.

Type Ada Name Description

Identifier id the folder identifier.

String name the folder name.

Date create_date the blog creation date.

9.10 Storage Servlet

The Storage_Servlet type is the servlet that allows to retrieve the file content that was uploaded.

9.11 Queries

Name Description

storage-list Get a list of storage files for a given folder.

Name Description

storage-folder-list Get a list of storage folders that a user can see.

Stephane Carrez 80



Ada Web Application Programmer’s Guide 2022-08-02

Name Description

storage-get-data Get the data content of the storage object.

storage-get-local Get the local data storage that can be used to read locally a storage object.

storage-get-storage Get the local data storage that can be used to read locally a storage object.

storage-delete-
local

Delete the local storage data

Name Description

storage-info Get the description of a document.

9.12 Datamodel

Stephane Carrez 81



Ada Web Application Programmer’s Guide 2022-08-02

10 Images Module

The imagesmodule is an extension of the Storages Module that identifies images and provides thumb-
nails as well as resizing of the original image.

The imagesmodule uses several other modules:

• the Storage Module to store andmanage image content,
• the Jobs Module to schedule image thumbnail generation.

10.1 Integration

To be able to use the Imagesmodule, you will need to add the following line in your GNAT project file:

1 with "awa_images";

The Image_Module type represents the image module. An instance of the image module must be
declared and registeredwhen the application is created and initialized. The imagemodule is associated
with the image service which provides and implements the imagemanagement operations.

1 with AWA.Images.Modules;
2 ...
3 type Application is new AWA.Applications.Application with record
4 Image_Module : aliased AWA.Images.Modules.Image_Module;
5 end record;

And it is registered in the Initialize_Modules procedure by using:

1 Register (App => App.Self.all'Access,
2 Name => AWA.Images.Modules.NAME,
3 Module => App.Image_Module'Access);

When the imagemodule is initialized, it registers itself as a listener to the storagemodule to be notified
when a storage file is created, updated or removed. When a file is added, it looks at the file type and
extracts the image information if the storage file is an image.

10.2 Configuration

The Imagesmodule defines the following configuration parameters:

Stephane Carrez 82



Ada Web Application Programmer’s Guide 2022-08-02

Name Description

images.thumbnail_command The command to execute to generate an image thumbnail for the
Images module.

convert -verbose -resize #{width}x#{height} -background white
-gravity center -extent #{width}x#{height} -format jpg -quality 75
#{src} #{dst}

10.3 Ada Beans

The Image_List_Bean type is used to represent a list of image stored in a folder.

The Image_Bean type holds all the data to give information about an image.

Name Description

storageFolder This bean allows to create a storage folder.

imageList This bean gives the list of images associated with a given folder.

imageInfo This bean gives the information about an image.

AWA.Images.Models.Image_Bean

The information about an image.

Type Ada Name Description

Identifier folder_id the image folder identifier.

String folder_name the image folder name.

Identifier id the image file identifier.

String name the image file name.

Date create_date the file creation date.

String uri the file storage URI.

AWA.Storages.Models.Storage_Type storage the file storage URI.

String mime_type the file mime type.

Integer file_size the file size.

Stephane Carrez 83



Ada Web Application Programmer’s Guide 2022-08-02

Type Ada Name Description

Boolean is_public whether the image is public.

Integer width the image width.

Integer height the image height.

AWA.Images.Models.Image_Info

The list of images for a given folder.

Type Ada Name Description

Identifier id the storage identifier which contains the image data.

String name the image file name.

Date create_date the image file creation date.

String uri the image file storage URI.

Integer storage the image file storage URI.

String mime_type the image file mime type.

Integer file_size the image file size.

Integer width the image width.

Integer height the image height.

Integer thumb_width the image thumbnail width.

Integer thumb_height the image thumbnail height.

Identifier thumbnail_id the image thumbnail identifier.

10.4 Queries

Name Description

image-info Get the description of an image.

Stephane Carrez 84



Ada Web Application Programmer’s Guide 2022-08-02

Name Description

image-list Get a list of images for a given folder.

10.5 Datamodel

Stephane Carrez 85



Ada Web Application Programmer’s Guide 2022-08-02

11 Wikis Module

The Wikis module provides a complete wiki system which allows users to create their own wiki
environment with their wiki pages.

11.1 Integration

To be able to use the Wikismodule, you will need to add the following line in your GNAT project file:

1 with "awa_wikis";

The Wiki_Modulemanages the creation, update, removal of wiki pages in an application. It provides
operations that are used by the wiki beans or other services to create and update wiki pages. An
instance of the Wiki_Modulemust be declared and registered in the AWA application. Themodule
instance can be defined as follows:

1 with AWA.Wikis.Modules;
2 ...
3 type Application is new AWA.Applications.Application with record
4 Wiki_Module : aliased AWA.Wikis.Modules.Wiki_Module;
5 end record;

And registered in the Initialize_Modules procedure by using:

1 Register (App => App.Self.all'Access,
2 Name => AWA.Wikis.Modules.NAME,
3 URI => "wikis",
4 Module => App.Wiki_Module'Access);

11.2 Configuration

Name Description

wikis.image_prefix The URL base prefix to be used for Wiki images.

#{contextPath}/wikis/images/

wikis.page_prefix The URL base prefix to be used for Wiki pages.

#{contextPath}/wikis/view/

wikis.wiki_copy_list A list of wiki page ID top copy when a newwiki space is created.

Stephane Carrez 86



Ada Web Application Programmer’s Guide 2022-08-02

Name Description

11.3 Events

The wikis exposes a number of events which are posted when some action are performed at the
service level.

Event name Description

wiki-create-page This event is posted when a newwiki page is created.

wiki-create-content This event is posted when a newwiki page content is created.

Each time a wiki page is modified, a new wiki page content

is created and this event is posted.

11.4 Ada Beans

Several bean types are provided to represent andmanage the blogs and their posts. The blog module
registers the bean constructors when it is initialized. To use them, one must declare a bean definition
in the application XML configuration.

Name Description

wikiView The wiki page with all its information to display it.

wikiImageInfo The information about an image used by a wiki page.

wikiPageInfo The wiki page information bean gives the various statistics and information
about a wiki page.

wikiFormatList A localized list of wiki page formats to be used for a f:selectItems

adminWiki The list of wikis and pages that the current user can access and update.

adminWikiSpace The wiki space bean to create and edit the wiki space configuration.

wikiPage The wiki page bean gives the full content and information about a wiki page.

wikiList The list of wiki pages.

wikiVersionList The list of wiki page versions.

Stephane Carrez 87



Ada Web Application Programmer’s Guide 2022-08-02

Name Description

wikiTagSearch The wiki tag search bean.

wikiTagCloud The list of tags associated with a wiki page entities.

wikiTags The wiki tag editor bean.

wikiPageStats The counter statistics for a wiki page

AWA.Wikis.Models.Wiki_View_Info

The information about a wiki page.

Type Ada Name Description

Identifier id the wiki page identifier.

String name the wiki page name.

String title the wiki page title.

Boolean is_public whether the wiki is public.

Nullable_Integer version the last version.

Nullable_Integer read_count the number of times the page was displayed.

Nullable_Date date the wiki page creation date.

AWA.Wikis.Models.Format_Type format the wiki page format.

String content the wiki page content.

String save_comment the wiki version comment.

String le�_side the wiki page le� side panel.

String right_side the wiki page right side panel.

AWA.Wikis.Models.Format_Type side_format the wiki side format.

String author the wiki page author.

Identifier acl_id the acl Id if there is one.

AWA.Wikis.Models.Wiki_Page_Info

The information about a wiki page.

Stephane Carrez 88



Ada Web Application Programmer’s Guide 2022-08-02

Type Ada Name Description

Identifier id the wiki page identifier.

String name the wiki page name.

String title the wiki page title.

Boolean is_public whether the wiki is public.

Integer last_version the last version.

Integer read_count the read count.

Date create_date the wiki creation date.

String author the wiki page author.

AWA.Wikis.Models.Wiki_Version_Info

The information about a wiki page version.

Type Ada Name Description

Identifier id the wiki page identifier.

String comment the wiki page version comment.

Date create_date the wiki page creation date.

Integer page_version the page version.

String author the wiki page author.

AWA.Wikis.Models.Wiki_Info

The list of wikis.

Type Ada Name Description

Identifier id the wiki space identifier.

String name the wiki name.

Boolean is_public whether the wiki is public.

Date create_date the wiki creation date.

Stephane Carrez 89



Ada Web Application Programmer’s Guide 2022-08-02

Type Ada Name Description

Integer page_count the number of pages in the wiki.

11.5 Queries

Name Description

wiki-page Get the content of a wiki page.

wiki-page-id Get the content of a wiki page.

wiki-page-content Get only the content of a wiki page (for template evaluation).

wiki-page-name-
count

Count the occurence of a wiki page name

Name Description

wiki-page-list Get the list of wiki pages

wiki-page-tag-list Get the list of wiki pages filtered by a tag

Name Description

wiki-version-list Get the list of wiki page versions

Name Description

wiki-list Get the list of wikis that the current user can update

Name Description

wiki-image-get-
data

Get the data content of the Wiki image (original image).

wiki-image-width-
get-data

Get the data content of the Wiki image for an image with a given width.

Stephane Carrez 90



Ada Web Application Programmer’s Guide 2022-08-02

Name Description

wiki-image-height-
get-data

Get the data content of the Wiki image for an image with a given height.

Name Description

wiki-image Get the description of an image used in a wiki page.

Name Description

page-access-stats Get statistics about the wiki page access.

Stephane Carrez 91



Ada Web Application Programmer’s Guide 2022-08-02

11.6 Datamodel

Stephane Carrez 92



Ada Web Application Programmer’s Guide 2022-08-02

12 Blogs Module

The blogsmodule is a small blog application which allows users to publish articles. A user may own
several blogs, each blog having a name and its own base URI. Within a blog, the user may write articles
and publish them. Once published, the articles are visible to anonymous users.

The blogsmodule uses several other modules:

• the Counters Module to track page display counter to a blog post,
• the Tags Module to associate one or several tags to a blog post,
• the Comments Module to allow users to write comments on a blog post,
• the Images Module to easily add images in blog post.

12.1 Integration

To be able to use the Blogsmodule, you will need to add the following line in your GNAT project file:

1 with "awa_blogs";

The Blog_Module type manages the creation, update, removal of blog posts in an application. It
provides operations that are used by the blog beans or other services to create and update posts. An
instance of the Blog_Modulemust be declared and registered in the AWA application. Themodule
instance can be defined as follows:

1 with AWA.Blogs.Modules;
2 ...
3 type Application is new AWA.Applications.Application with record
4 Blog_Module : aliased AWA.Blogs.Modules.Blog_Module;
5 end record;

And registered in the Initialize_Modules procedure by using:

1 Register (App => App.Self.all'Access,
2 Name => AWA.Blogs.Modules.NAME,
3 URI => "blogs",
4 Module => App.Blog_Module'Access);

12.2 Ada Beans

Several bean types are provided to represent andmanage the blogs and their posts. The blog module
registers the bean constructors when it is initialized. To use them, one must declare a bean definition
in the application XML configuration.

Stephane Carrez 93



Ada Web Application Programmer’s Guide 2022-08-02

Name Description

post This bean describes a blog post for the creation or the update

postList This bean describes a blog post for the creation or the update

postStatusList A localized list of post statuses to be used for a f:selectItems

postAccessStats The counter statistics for a blog post

blogFormatList A localized list of blog post formats to be used for a f:selectItems

adminBlog The list of blogs and posts that the current user can access and update.

blog Information about the current blog.

feed_blog Information about the RSS feed blog.

blogTagSearch The blog tag search bean.

blogTagCloud A list of tags associated with all post entities.

postComments A list of comments associated with a post.

postAdminCommentsA list of all comments associated with a post (for admin purposes).

postNewComment The bean to allow a user to post a new comment. This is a specific bean because
the permission to create a new post is di�erent from other permissions. If the
permission is granted, the comment will be created and put in the
COMMENT_WAITING state. An email will be sent to the post author for approval.

blogPublishCommentThe bean to allow the blog administrator to change the publication status of a
comment.

blogDeleteCommentThe bean to allow the blog administrator to change the publication status of a
comment.

commentEdit The bean to allow a user to edit the comment. This is a specific bean because
the permission to edit the comment is di�erent from other permissions.

blogStats This bean provides statistics about the blog

AWA.Blogs.Models.Admin_Post_Info

The Admin_Post_Info describes a post in the administration interface.

Type Ada Name Description

Identifier id the post identifier.

Stephane Carrez 94



Ada Web Application Programmer’s Guide 2022-08-02

Type Ada Name Description

String title the post title.

String uri the post uri.

Date date the post publish date.

AWA.Blogs.Models.Post_Status_Type status the post status.

Natural read_count the number of times the post was read.

String username the user name.

Natural comment_count the number of comments for this post.

AWA.Blogs.Models.Post_Info

The Post_Info describes a post to be displayed in the blog page

Type Ada Name Description

Identifier id the post identifier.

String title the post title.

String uri the post uri.

Date date the post publish date.

String username the user name.

AWA.Blogs.Models.Format_Type format the post page format.

String summary the post summary.

String text the post text.

Boolean allow_comments the post allows to add comments.

Natural comment_count the number of comments for this post.

AWA.Blogs.Models.Comment_Info

The comment information.

Stephane Carrez 95



Ada Web Application Programmer’s Guide 2022-08-02

Type Ada Name Description

Identifier id the comment identifier.

Identifier post_id the post identifier.

String title the post title.

String author the comment author’s name.

String email the comment author’s email.

Date date the comment date.

AWA.Comments.Models.Status_Type status the comment status.

AWA.Blogs.Models.Blog_Info

The list of blogs.

Type Ada Name Description

Identifier id the blog identifier.

String title the blog title.

String uid the blog uuid.

Date create_date the blog creation date.

Integer post_count the number of posts published.

12.3 Queries

Name Description

blog-admin-post-list Get the list of blog posts

blog-admin-post-list-date Get the list of blog posts

Name Description

blog-post-list Get the list of public visible posts

Stephane Carrez 96



Ada Web Application Programmer’s Guide 2022-08-02

Name Description

blog-post-tag-list Get the list of public visible posts filtered by a tag

Name Description

comment-list Get the list of comments associated with given database entity

Name Description

blog-list Get the list of blogs that the current user can update

Name Description

blog-tag-cloud Get the list of tags associated with all the database entities of a given type

Name Description

blog-image-get-
data

Get the data content of the Wiki image (original image).

blog-image-width-
get-data

Get the data content of the Wiki image for an image with a given width.

blog-image-height-
get-data

Get the data content of the Wiki image for an image with a given height.

Name Description

blog-image Get the description of an image used in a blog post.

Name Description

post-publish-stats Get statistics about the post publication on a blog.

Stephane Carrez 97



Ada Web Application Programmer’s Guide 2022-08-02

Name Description

post-access-stats Get statistics about the post publication on a blog.

12.4 Datamodel

Stephane Carrez 98



Ada Web Application Programmer’s Guide 2022-08-02

13 Counters Module

The countersmodule defines a general purpose counter service that allows to associate counters to
database entities. For example it can be used to track the number of times a blog post or a wiki page is
accessed. The countersmodule maintains the counters in a table on a per-day and per-entity basis.
It allows to update the full counter in the target database entity table.

13.1 Integration

The Counter_Module manages the counters associated with database entities. To avoid having
to update the database each time a counter is incremented, counters are kept temporarily in a
Counter_Table protected type. The table contains only the partial increments and not the real
counter values. Counters are flushed when the table reaches some limit, or, when the table is oldest
than some limit. Counters are associated with a day so that it becomes possible to gather per-day
counters. The table is also flushed when a counter is incremented in a di�erent day.

To be able to use the Countersmodule, you will need to add the following line in your GNAT project
file:

1 with "awa_counters";

An instance of the Counter_Modulemust be declared and registered in the AWA application. The
module instance can be defined as follows:

1 with AWA.Counters.Modules;
2 ...
3 type Application is new AWA.Applications.Application with record
4 Counter_Module : aliased AWA.Counters.Modules.Counter_Module;
5 end record;

And registered in the Initialize_Modules procedure by using:

1 Register (App => App.Self.all'Access,
2 Name => AWA.Counters.Modules.NAME,
3 Module => App.Counter_Module'Access);

13.2 Configuration

The countersmodule defines the following configuration parameters:

Stephane Carrez 99



Ada Web Application Programmer’s Guide 2022-08-02

Name Description

counters.counter_age_limit Themaximum age limit in seconds for a pending counter increment
to stay in the internal table. When a pending counter reaches this
age limit, the pending counter increments are flushed and the table
is cleared. The default is 5 minutes.

300

counters.counter_limit The maximum number of di�erent counters which can be stored in
the internal table before flushing the pending increments to the
database. When this limit is reached, the pending counter
increments are flushed and the table is cleared.

1000

13.3 Counter Declaration

Each counter must be declared by instantiating the Definition package. This instantiation serves as
identification of the counter and it defines the database table as well as the column in that table that
will hold the total counter. The following definition is used for the read counter of a wiki page. The
wiki page table contains a read_count column and it will be incremented each time the counter is
incremented.

1 with AWA.Counters.Definition;
2 ...
3 package Read_Counter is
4 new AWA.Counters.Definition
5 (AWA.Wikis.Models.WIKI_PAGE_TABLE, "read_count");

When the database table does not contain any counter column, the column field name is not given and
the counter definition is defined as follows:

1 with AWA.Counters.Definition;
2 ...
3 package Login_Counter is
4 new AWA.Counters.Definition (AWA.Users.Models.USER_PAGE_TABLE);

Sometimes a counter is not associated with any database entity. Such counters are global and they are
assigned a unique name.

1 with AWA.Counters.Definition;

Stephane Carrez 100



Ada Web Application Programmer’s Guide 2022-08-02

2 ...
3 package Start_Counter is
4 new AWA.Counters.Definition (null, "startup_counter");

13.4 Incrementing the counter

Incrementing the counter is done by calling the Increment operation. When the counter is associated
with a database entity, the entity primary key must be given. The counter is not immediately incre-
mented in the database so that several calls to the Increment operation will not trigger a database
update.

1 with AWA.Counters;
2 ...
3 AWA.Counters.Increment (Counter => Read_Counter.Counter, Key => Id);

A global counter is also incremented by using the Increment operation.

1 with AWA.Counters;
2 ...
3 AWA.Counters.Increment (Counter => Start_Counter.Counter);

13.5 Ada Bean

The Counter_Bean allows to represent a counter associated with some database entity and allows
its control by the <awa:counter> HTML component. To use it, an instance of the Counter_Bean
should be defined in a another Ada bean declaration and configured. For example, it may be declared
as follows:

1 type Wiki_View_Bean is new AWA.Wikis.Models.Wiki_View_Info
2 with record
3 ...
4 Counter : aliased Counter_Bean
5 (Of_Type => ADO.Objects.KEY_INTEGER,
6 Of_Class => AWA.Wikis.Models.WIKI_PAGE_TABLE);
7 end record;

The counter value is held by the Value member of Counter_Bean and it should be initialized
programatically when the Ada bean instance is loaded (for example through a load action). The
Counter_Bean needs to know the database entity to which it is associated and its Objectmember

Stephane Carrez 101



Ada Web Application Programmer’s Guide 2022-08-02

must be initialized. This is necessary for the <awa:counter> HTML component to increment the
associated counter when the page is displayed. Below is an extract of such initialization:

1 procedure Load
2 (Bean : in out Wiki_View_Bean;
3 Outcome : in out Ada.Strings.Unbounded.Unbounded_String) is
4 begin
5 ...
6 Bean.Counter.Value := Bean.Get_Read_Count;
7 ADO.Objects.Set_Value (Bean.Counter.Object, Bean.Get_Id);
8 end Load;

The Stat_List_Bean allows to retrieve the list of counters per day for a given database entity. It
needs a specialmanaged bean configuration that describes the database entity type, the counter name
and SQL query name.

The example below from the Wikis Module declares the bean wikiPageStats. The database entity
is awa_wiki_pagewhich is the name of the database table that holds wiki page. The SQL query to
retrieve the result is page-access-stats.

1 <description>The counter statistics for a wiki page</description>
2 <managed-bean-name>wikiPageStats</managed-bean-name>
3 <managed-bean-class>AWA.Counters.Beans.Stat_List_Bean</managed-bean-

class>
4 <managed-bean-scope>request</managed-bean-scope>
5 <managed-property>
6 <property-name>entity_type</property-name>
7 <property-class>String</property-class>
8 <value>awa_wiki_page</value>
9 </managed-property>
10 <managed-property>
11 <property-name>counter_name</property-name>
12 <property-class>String</property-class>
13 <value>read_count</value>
14 </managed-property>
15 <managed-property>
16 <property-name>query_name</property-name>
17 <property-class>String</property-class>
18 <value>page-access-stats</value>
19 </managed-property>
20 </managed-bean>

A typical XHTML view that wants to use such bean, should call the load action at beginning to load the

Stephane Carrez 102



Ada Web Application Programmer’s Guide 2022-08-02

counter statistics by running the SQL query.

1 <f:view contentType="application/json; charset=UTF-8"
2 xmlns:f="http://java.sun.com/jsf/core"
3 xmlns:h="http://java.sun.com/jsf/html">
4 <f:metadata>
5 <f:viewAction action='#{wikiPageStats.load}'/>
6 </f:metadata>
7 {"data":[<h:list value="#{wikiPageStats.stats}"
8 var="stat">["#{stat.date}", #{stat.count}],</h:list>[0,0]]}
9 </f:view>

13.6 HTML components

The <awa:counter> component is an Ada Server Faces component that allows to increment and
display easily the counter. The component works by using the Counter_Bean Ada bean object which
describes the counter in terms of counter definition, the associated database entity, and the current
counter value.

1 <awa:counter value="#{wikiPage.counter}"/>

When the component is included in a page the Counter_Bean instance associated with the EL value
attribute is used to increment the counter. This is similar to calling the AWA.Counters.Increment
operation from the Ada code.

13.7 Datamodel

Thecountersmodulehasa simpledatabasemodelwhichneeds two tables. TheCounter_Definition
table is used to keep track of the di�erent counters used by the application. A row in that table is
created for each counter declared by instantiating the Definition package. The Counter table
holds the counters for each database entity and for each day. By looking at that table, it becomes
possible to look at the daily access or usage of the counter.

Stephane Carrez 103

https://github.com/stcarrez/ada-asf


Ada Web Application Programmer’s Guide 2022-08-02

Stephane Carrez 104



Ada Web Application Programmer’s Guide 2022-08-02

14 Votes Module

The votesmodule allows users to vote for objects defined in the application. Users can vote by setting
a rating value on an item (+1, -1 or any other integer value). The votesmodule makes sure that users
can vote only once for an item. A global rating is associated with the item to give the vote summary.
The vote can be associated with any database entity and it is not necessary to change other entities in
your data model.

14.1 Integration

To be able to use the votesmodule, you will need to add the following line in your GNAT project file:

1 with "awa_votes";

The Vote_Modulemanages the votes on entities. It provides operations that are used by the vote
beans or other services to vote for an item. An instance of the Vote_Modulemust be declared and
registered in the AWA application.

The module instance can be defined as follows:

1 type Application is new AWA.Applications.Application with record
2 Vote_Module : aliased AWA.Votes.Modules.Vote_Module;
3 end record;

And registered in the Initialize_Modules procedure by using:

1 Register (App => App.Self.all'Access,
2 Name => AWA.Votes.Modules.NAME,
3 URI => "votes",
4 Module => App.Vote_Module'Access);

14.2 Ada Beans

The Vote_Bean is a bean intended to be used in presentation files (XHTML facelet files) to vote for
an item. The managed bean can be easily configured in the application XML configuration file. The
permission and entity_type are the two properties that should be defined in the configuration.
The permission is the name of the permission that must be used to verify that the user is allowed
to vote for the item. The entity_type is the name of the entity (table name) used by the item. The
example below defines the bean questionVote defined by the question module.

1 <managed-bean>

Stephane Carrez 105



Ada Web Application Programmer’s Guide 2022-08-02

2 <description>The vote bean that allows to vote for a question.</
description>

3 <managed-bean-name>questionVote</managed-bean-name>
4 <managed-bean-class>AWA.Votes.Beans.Votes_Bean</managed-bean-class>
5 <managed-bean-scope>request</managed-bean-scope>
6 <managed-property>
7 <property-name>permission</property-name>
8 <property-class>String</property-class>
9 <value>answer-create</value>
10 </managed-property>
11 <managed-property>
12 <property-name>entity_type</property-name>
13 <property-class>String</property-class>
14 <value>awa_question</value>
15 </managed-property>
16 </managed-bean>

The vote concerns entities for the awa_question entity table. The permission answer-create is
used to verify that the vote is allowed.

The managed bean defines three operations that can be called: vote_up, vote_down and vote to

Stephane Carrez 106



Ada Web Application Programmer’s Guide 2022-08-02

setup specific ratings.

14.3 Javascript integration

The votes module provides a Javascript support to help users vote for items. The Javascript file
/js/awa-votes.jsmust be included in the Javascript page. It is based on jQuery and ASF. The vote
actions are activated on the page items as follows in XHTML facelet files:

1 <util:script>
2 $('.question-vote').votes({
3 voteUrl: "#{contextPath}/questions/ajax/questionVote/vote?id=",
4 itemPrefix: "vote_for-"
5 });
6 </util:script>

When the vote up or down HTML element is clicked, the vote operation of the managed bean
questionVote is called. The operation will update the user’s vote for the selected item (in the
example “a question”).

Stephane Carrez 107



Ada Web Application Programmer’s Guide 2022-08-02

14.4 Datamodel

Stephane Carrez 108



Ada Web Application Programmer’s Guide 2022-08-02

15 Tags Module

The Tagsmodule allows to associate general purpose tags to any database entity. It provides a JSF
component that allows to insert easily a list of tags in a page and in a form. An application can use the
bean typesdefined inAWA.Tags.Beans todefine the tags and itwill use theawa:tagList component
to display them. A tag cloud is also provided by the awa:tagCloud component.

15.1 Integration

The Tag_Module manages the tags associated with entities. It provides operations that are used by
the tag beans together with the awa:tagList and awa:tagCloud components to manage the tags. An
instance of the Tag_Module must be declared and registered in the AWA application. The module
instance can be defined as follows:

1 type Application is new AWA.Applications.Application with record
2 Tag_Module : aliased AWA.Tags.Modules.Tag_Module;
3 end record;

And registered in the Initialize_Modules procedure by using:

1 Register (App => App.Self.all'Access,
2 Name => AWA.Tags.Modules.NAME,
3 URI => "tags",
4 Module => App.Tag_Module'Access);

15.2 Ada Beans

Several bean types are provided to represent and manage a list of tags. The tag module registers
the bean constructors when it is initialized. To use them, one must declare a bean definition in the
application XML configuration.

15.2.1 Tag_List_Bean

The Tag_List_Bean holds a list of tags and provides operations used by the awa:tagList compo-
nent to add or remove tags within a h:form component. A bean can be declared and configured as
follows in the XML application configuration file:

1 <managed-bean>
2 <managed-bean-name>questionTags</managed-bean-name>
3 <managed-bean-class>AWA.Tags.Beans.Tag_List_Bean</managed-bean-class>

Stephane Carrez 109



Ada Web Application Programmer’s Guide 2022-08-02

4 <managed-bean-scope>request</managed-bean-scope>
5 <managed-property>
6 <property-name>entity_type</property-name>
7 <property-class>String</property-class>
8 <value>awa_question</value>
9 </managed-property>
10 <managed-property>
11 <property-name>permission</property-name>
12 <property-class>String</property-class>
13 <value>question-edit</value>
14 </managed-property>
15 </managed-bean>

The entity_type property defines the name of the database table to which the tags are assigned.
The permission property defines the permission name that must be used to verify that the user has
the permission do add or remove the tag. Such permission is verified only when the awa:tagList
component is used within a form.

15.2.2 Tag_Search_Bean

The Tag_Search_Bean is dedicated to searching for tags that start with a given pattern. The auto
complete feature of the awa:tagList component can use this bean type to look in the database
for tags matching a start pattern. The declaration of the bean should define the database table to
search for tags associated with a given database table. This is done in the XML configuration with the
entity_type property.

1 <managed-bean>
2 <managed-bean-name>questionTagSearch</managed-bean-name>
3 <managed-bean-class>AWA.Tags.Beans.Tag_Search_Bean</managed-bean-

class>
4 <managed-bean-scope>request</managed-bean-scope>
5 <managed-property>
6 <property-name>entity_type</property-name>
7 <property-class>String</property-class>
8 <value>awa_question</value>
9 </managed-property>
10 </managed-bean>

Stephane Carrez 110



Ada Web Application Programmer’s Guide 2022-08-02

15.2.3 Tag_Info_List_Bean

The Tag_Info_List_Bean holds a collection of tags with their weight. It is used by the awa:tagCloud
component.

1 <managed-bean>
2 <managed-bean-name>questionTagList</managed-bean-name>
3 <managed-bean-class>AWA.Tags.Beans.Tag_Info_List_Bean</managed-bean-

class>
4 <managed-bean-scope>request</managed-bean-scope>
5 <managed-property>
6 <property-name>entity_type</property-name>
7 <property-class>String</property-class>
8 <value>awa_question</value>
9 </managed-property>
10 </managed-bean>

AWA.Tags.Models.Tag_Info

The tag information.

Type Ada Name Description

String tag the tag name.

Natural count the number of references for the tag.

15.3 HTML components

15.3.1 Displaying a list of tags

The awa:tagList component displays a list of tags. Each tag can be rendered as a link if the tagLink
attribute is defined. The list of tags is passed in the value attribute. When rending that list, the var
attribute is used to setup a variable with the tag value. The tagLink attribute is then evaluated against
that variable and the result defines the link.

1 <awa:tagList value='#{questionList.tags}' id='qtags' styleClass="
tagedit-list"

2 tagLink="#{contextPath}/questions/tagged.html?tag=#{
tagName}"

3 var="tagName"
4 tagClass="tagedit-listelement tagedit-listelement-old"/>

Stephane Carrez 111



Ada Web Application Programmer’s Guide 2022-08-02

15.3.2 Tag editing

The awa:tagList component allows to add or remove tags associated with a given database entity.
The tag management works with the jQuery plugin Tagedit. For this, the page must include the
/js/jquery.tagedit.js Javascript resource.

The tag edition is active only if the awa:tagList component is placed within an h:form component. The
value attribute defines the list of tags. This must be a Tag_List_Bean object.

1 <awa:tagList value='#{question.tags}' id='qtags'
2 autoCompleteUrl='#{contextPath}/questions/lists/tag-search

.html'/>

When the form is submitted and validated, the procedure Set_Added and Set_Deleted are called on
the value bean with the list of tags that were added and removed. These operations are called in the
UPDATE_MODEL_VALUES phase (ie, before calling the action’s bean operation).

15.3.3 Tag cloud

The awa:tagCloud component displays a list of tags as a tag cloud. The tags list passed in the value
attribute must inherit from the Tag_Info_List_Bean type which indicates for each tag the number of
times it is used.

1 <awa:tagCloud value='#{questionTagList}' id='cloud' styleClass="tag-
cloud"

2 var="tagName" rows="30"
3 tagLink="#{contextPath}/questions/tagged.html?tag=#{

tagName}"
4 tagClass="tag-link"/>

15.4 Queries

Name Description

check-tag Check and get the tag identifier associated with a given tag and entity

tag-list Get the list of tags associated with a given database entity

tag-search Get the list of tag names that match some string

Stephane Carrez 112



Ada Web Application Programmer’s Guide 2022-08-02

Name Description

tag-list-all Get the list of tags associated with all the database entities of a given type

tag-list-for-entities Get the list of tags associated with a set of entities of the same type.

15.5 Datamodel

The database model is generic and it uses the Entity_Type provided by Ada Database Objects to
associate a tag to entities stored in di�erent tables. The Entity_Type identifies the database table
and the stored identifier in for_entity_id defines the entity in that table.

Stephane Carrez 113

https://github.com/stcarrez/ada-ado


Ada Web Application Programmer’s Guide 2022-08-02

16 Comments Module

The Commentsmodule is a general purpose module that allows to associate user comments to any
database entity. The module defines several bean types that allow to display a list of comments or edit
and publish a new comment.

16.1 Integration

The Comment_Module manages the comments associated with entities. It provides operations that
are used by the comment beans to manage the comments. An instance of the Comment_Module must
be declared and registered in the AWA application. The module instance can be defined as follows:

1 type Application is new AWA.Applications.Application with record
2 Comment_Module : aliased AWA.Comments.Modules.Comment_Module;
3 end record;

And registered in the Initialize_Modules procedure by using:

1 Register (App => App.Self.all'Access,
2 Name => AWA.Comments.Modules.NAME,
3 URI => "comments",
4 Module => App.Comment_Module'Access);

16.2 Ada Beans

Several bean types are provided to represent and manage a list of tags. The tag module registers
the bean constructors when it is initialized. To use them, one must declare a bean definition in the
application XML configuration.

16.2.1 Comment_List_Bean

TheComment_List_Beanholdsa list of commentsandprovidesoperationsusedby theawa:tagList
component to add or remove tagswithin a h:form component. A bean can be declared and configured
as follows in the XML application configuration file:

1 <managed-bean>
2 <managed-bean-name>postCommentList</managed-bean-name>
3 <managed-bean-class>AWA.Comments.Beans.Comment_List_Bean</managed-

bean-class>
4 <managed-bean-scope>request</managed-bean-scope>

Stephane Carrez 114



Ada Web Application Programmer’s Guide 2022-08-02

5 <managed-property>
6 <property-name>entity_type</property-name>
7 <property-class>String</property-class>
8 <value>awa_post</value>
9 </managed-property>
10 <managed-property>
11 <property-name>permission</property-name>
12 <property-class>String</property-class>
13 <value>blog-comment-post</value>
14 </managed-property>
15 <managed-property>
16 <property-name>sort</property-name>
17 <property-class>String</property-class>
18 <value>oldest</value>
19 </managed-property>
20 <managed-property>
21 <property-name>status</property-name>
22 <property-class>String</property-class>
23 <value>published</value>
24 </managed-property>
25 </managed-bean>

The entity_type property defines the name of the database table to which the comments are as-
signed. The permission property defines the permission name that must be used to verify that the
user has the permission do add or remove the comment.

AWA.Comments.Models.Comment_Info

The comment information.

Type Ada Name Description

Identifier id the comment identifier.

String author the comment author’s name.

String email the comment author’s email.

Date date the comment date.

AWA.Comments.Models.Format_Type format the comment format type.

String comment the comment text.

AWA.Comments.Models.Status_Type status the comment status.

Stephane Carrez 115



Ada Web Application Programmer’s Guide 2022-08-02

Name Description

comment-list Get the list of comments associated with given database entity

all-comment-list Get the list of comments associated with given database entity

16.3 Datamodel

The database model is generic and it uses the Entity_Type provided by Ada Database Objects to
associate a comment to entities stored in di�erent tables. The Entity_Type identifies the database
table and the stored identifier in for_entity_id defines the entity in that table.

Stephane Carrez 116

https://github.com/stcarrez/ada-ado


Ada Web Application Programmer’s Guide 2022-08-02

17 Settings Module

The Settingsmodule provides management of application and user settings. A setting is identified
by a unique name in the application. It is saved in the database and associated with a user.

17.1 Getting a user setting

Getting a user setting is as simple as calling a function with the setting name and the default value.
If the setting was modified by the user and saved in the database, the saved value will be returned.
Otherwise, the default value is returned. For example, if an application defines a row-per-page
setting to define howmany rows are defined in a list, the user setting can be retrieved with:

1 Row_Per_Page : constant Integer := AWA.Settings.Get_User_Setting ("row-
per-page", 10);

17.2 Saving a user setting

When a user changes the setting value, we just have to save it in the database. The setting value will
either be updated if it exists or created.

1 AWA.Settings.Set_User_Setting ("row-per-page", 20);

17.3 Integration

The Setting_Module manages the application and user settings. An instance of the the
Setting_Modulemust be declared and registered in the AWA application. The module instance can
be defined as follows:

1 type Application is new AWA.Applications.Application with record
2 Setting_Module : aliased AWA.Settings.Modules.Setting_Module;
3 end record;

And registered in the Initialize_Modules procedure by using:

1 Register (App => App.Self.all'Access,
2 Name => AWA.Settings.Modules.NAME,
3 URI => "settings",
4 Module => App.Setting_Module'Access);

Stephane Carrez 117



Ada Web Application Programmer’s Guide 2022-08-02

17.4 Datamodel

Stephane Carrez 118



Ada Web Application Programmer’s Guide 2022-08-02

18 Setup Application

The AWA.Setup package implements a simple setup application that allows to configure the database,
the Google and Facebook application identifiers and some other configuration parameters. It is in-
tended to help in the installation process of any AWA-based application.

It defines a specific web application that is installed in the web container for the duration of the setup.
The setup application takes control over all the web requests during the lifetime of the installation.
As soon as the installation is finished, the normal application is configured and installed in the web
container and the user is automatically redirected to it.

18.1 Integration

To be able to use the setup application, you will need to add the following line in your GNAT project file:

1 with "awa_setup";

The setup application can be integrated as an AWA command by instantiating the AWA.Commands.
Setup generic package. To integrate the setup command, you will do:

1 with AWA.Commands.Start;
2 with AWA.Commands.Setup;
3 ...
4 package Start_Command is new AWA.Commands.Start (Server_Commands);
5 package Setup_Command is new AWA.Commands.Setup (Start_Command);

18.2 Setup Procedure Instantiation

The setup process is managed by the Configure generic procedure. The proceduremust be instantiated
with the application class type and the application initialize procedure.

1 procedure Setup is
2 new AWA.Setup.Applications.Configure (MyApp.Application'Class,
3 MyApp.Application_Access,
4 MyApp.Initialize);

18.3 Setup Operation

The Setup instantiated operation must then be called with the web container. The web container is
started first and the Setup procedure gets as parameter the web container, the application instance to
configure, the application name and the application context path.

Stephane Carrez 119



Ada Web Application Programmer’s Guide 2022-08-02

1 Setup (WS, App, "atlas", MyApp.CONTEXT_PATH)

The operation will install the setup application to handle the setup actions. Through the setup actions,
the installer will be able to:

• Configure the database (MySQL or SQLite),
• Configure the Google+ and Facebook OAuth authentication keys,
• Configure the application name,
• Configure the mail parameters to be able to send email.

A�er the setup and configure is finished, the file .initialized is created in the application directory to
indicate the application is configured. The next time the Setup operation is called, the installation
process will be skipped.

To run again the installation, removemanually the .initialized file.

Stephane Carrez 120



Ada Web Application Programmer’s Guide 2022-08-02

19 Tips

19.1 UI Presentation Tips

19.1.1 Adding a simple page

To add a new presentation page in the application, you can use the Dynamo code generator. The web
page is an XHTML file created under the web directory. The page name can contain a directory that
will be created if necessary. The new web page can be configured to use a given layout. The layout file
must exist to be used. The default layout is layout. You can create a new layout with add-layout
command. You can also write your layout by adding an XHTML file in the directory:

1 web/WEB-INF/layouts

To create the new web page web/todo/list.xhtml, you will use:

1 dynamo add-page todo/list

Depending on your application configuration and the URL used by the new page, you may have to
add or modify a url-policy. By default, if the new URL does not match an existing url-policy,
the access will be denied for security reasons. To allow anonymous users to access the page, use the
following url-policy:

1 <url-policy>
2 <permission>anonymous</permission>
3 <url-pattern>/todo/list.html</url-pattern>
4 </url-policy>

and if you want only logged users, use the following:

1 <url-policy>
2 <permission>logged-user</permission>
3 <url-pattern>/todo/list.html</url-pattern>
4 </url-policy>

Note: make sure to replace the .xhtml extension by .html.

19.1.2 Add Open Graph

Use a combination of fn:trim, fn:substring and util:escapeJavaScript to create the Open
Graph description. The first two functions will remove spaces at begining and end of the description
and will truncate the string. The util:escapeJavaScript is then necessary to make a value HTML
attribute when the description contains special characters.

Stephane Carrez 121

https://github.com/stcarrez/dynamo


Ada Web Application Programmer’s Guide 2022-08-02

1 <meta property="og:description"
2 content="#{util:escapeJavaScript(fn:substring(fn:trim(post.description

),1,128))}"/>

19.1.3 Formatting dates

A date can easily be formatted by following the Java Server Faces patterns by using the f:
convertDateTime converter. The pattern attribute controls how the date is formated and it takes
into account the locale used to render the request. For example:

1 <h:outputText value="#{event.member.payment_date}">
2 <f:convertDateTime pattern="%A %d %B %Y"/>
3 </h:outputText>

Sometimes, the date must be formatted within an attribute of some HTML element. In that case,
the h:outputText cannot be used but instead we can use the util:formatDate EL function. For
example:

1 date="#{util:formatDate(post.date,'%Y-%m-%d')}"

19.2 Configuration Tips

19.2.1 Adding a permission on user creation

Sometimes it is useful to add somepermissionwhen a user is created. This can be done programatically
but also through some simple configuration. By using the on-event XML definition, it is possible to
create a set of permissions when the user-create event is posted, hence during user creation.

The following XML extract from Atlas demonstrator will add several Wiki permissions to the new user.

1 <on-event name="user-create">
2 <action>#{permission.create}</action>
3 <property name="entity_type">awa_wiki_space</property>
4 <property name="entity_id">1</property>
5 <property name="workspace_id">1</property>
6 <property name="permission">wiki-page-create,wiki-page-update,wiki-

page-delete,wiki-page-view,wiki-space-delete,wiki-space-update</
property>

7 </on-event>

Stephane Carrez 122



Ada Web Application Programmer’s Guide 2022-08-02

19.2.2 Secure configuration

Setting up the secure configuration is made by using a secure keystore with the akt tool. The secure
configuration is stored in the keystore file that akt will protect by encrypting each configuration
propertywith their ownencryption key. In order to setup anduse the secure configuration the following
steps are necessary:

• Create the keystore file and protect it with a password or a GPG key,
• Populate the keystore file with the configuration values,
• Launch the server with specific options in order to use and access the keystore file.

The two initial steps are done by using the akt tool.

To create the keystore file, one way is to run the akt command and give it the keystore password:

1 mkdir secure
2 akt create --wallet-key-file=secure/wallet.key -c 100000:300000 \
3 secure/config.akt

This will generate the secure/wallet.key file and setup the keystore file in secure/config.akt.
The password must be given to the server when it is started. To avoid that, it is possible to store it in a
file andmake sure the file is protected against read and write access. If the password is stored in such
file, the keystore is created by using:

1 akt create --wallet-key-file=secure/wallet.key \
2 --passfile=secure/master.key -c 100000:300000 \
3 secure/config.akt

Once the keystore is created, the configuration are inserted. Because the server command can use
only one keystore and have several applications, the configuration parameter must be prefixed by the
application name. For example, to setup the database configuration for the atlas application, you
will use the command:

1 akt set --wallet-key-file=secure/wallet.key \
2 --passfile=secure/master.key \
3 secure/config.akt \
4 atlas.database 'mysql://localhost:3306/atlas?user=atlas&password=

PiX2ShaimohW6eno

To avoid having to specify several configuration parameters when launching the server, it is good
practice to create a server global configuration file and indicate several parameters that the server will
use. Create a file secure/config.properties that contains:

Stephane Carrez 123



Ada Web Application Programmer’s Guide 2022-08-02

1 keystore-path=secure/config.akt
2 keystore-masterkey-path=secure/master.key
3 keystore-password-path=secure/password.key

Then, to start the server we just need to give it the server global configuration path:

1 bin/atlas-server -c secure/config.properties start

Note that in order to use this configuration setup, the directory must have the rwx------ rights and
files must have the rw------- rights.

19.3 Trouble shotting Tips

19.3.1 No AWA service context

When the AWA framework emits the following error:

1 ERROR - AWA.Services.Contexts - : No AWA service context: may be a '
filter-mapping' is missing to activate the 'service' filter in the
request path

it is o�en followed by a Constraint Error such as:

1 CONSTRAINT_ERROR: awa-services-contexts.adb:53 access check failed

and it is caused by an application that uses the AWA.Services.Contexts.Current operation on
an incoming request but there is no AWA service context. In most cases, the root cause is that a servlet
filter is missing in the configuration for the current URL request. You may add such servlet filter by
using the configuration:

1 <filter-mapping>
2 <filter-name>service</filter-name>
3 <url-pattern>/*.html</url-pattern>
4 </filter-mapping>

and replace the /*.html pattern by the URL that caused the error.

Stephane Carrez 124


	Introduction
	System Components
	General Purpose Components
	Functional Components

	Installation
	Before Building
	Getting the sources
	Development Host Installation
	Ubuntu
	FreeBSD 12
	Windows

	Ada Web Server
	Configuration
	Build
	Installation
	Using

	Tutorial
	The review web application
	Setting up the project
	Project creation with Dynamo
	Creating the review module with Dynamo

	Designing the data model
	ArgoUML setup
	Modelize the domain model in UML
	Adding relations in the UML model
	Makefile setup
	Generating the Ada model
	Creating the database

	Adding a creation form
	Adding pages
	The create review form
	How it works
	The Review_Bean type declaration
	The Review_Bean implementation
	The Review_Bean creation
	Navigation rules

	Creating the module
	Adding the module operations
	Saving our review
	Setting up the permissions

	Using database queries
	Adding database queries
	Implementing the review list bean
	Review list bean creation
	Review list bean declaration
	Listing the reviews: the XHTML facelet presentation file
	Understanding the request flow


	AWA Core
	Initialization
	Configuration
	AWA Modules
	Registration
	Configuration

	AWA Permissions
	Declaration
	Checking for a permission
	Configuring a permission
	Adding a permission
	Data Model
	Queries
	Queries

	AWA Events
	Declaration
	Posting an event
	Receiving an event
	Event queues and dispatchers
	Data Model

	AWA Commands
	Command Usage
	Integration


	Users Module
	Integration
	OAuth Authentication Flow
	Configuration
	Ada Beans
	Data model

	Jobs Module
	Integration
	Writing a job
	Registering a job
	Scheduling a job
	Checking for job completion
	Job Service
	Ada Beans
	Data Model

	Mail Module
	Integration
	Configuration
	Sending an email
	Components
	Mail Recipients
	Mail Messages
	Mail Attachments

	Ada Beans

	Workspaces Module
	Events
	invite-user
	accept-invitation

	Ada Beans
	Beans
	Permissions
	Configuration

	Data Model

	Storages Module
	Integration
	Permissions
	Configuration
	Creating a storage
	Getting the data
	Local file
	Storage Service
	Store Service
	Database store
	File System store

	Ada Beans
	Storage Servlet
	Queries
	Data model

	Images Module
	Integration
	Configuration
	Ada Beans
	Queries
	Data model

	Wikis Module
	Integration
	Configuration
	Events
	Ada Beans
	Queries
	Data model

	Blogs Module
	Integration
	Ada Beans
	Queries
	Data model

	Counters Module
	Integration
	Configuration
	Counter Declaration
	Incrementing the counter
	Ada Bean
	HTML components
	Data model

	Votes Module
	Integration
	Ada Beans
	Javascript integration
	Data model

	Tags Module
	Integration
	Ada Beans
	Tag_List_Bean
	Tag_Search_Bean
	Tag_Info_List_Bean

	HTML components
	Displaying a list of tags
	Tag editing
	Tag cloud

	Queries
	Data model

	Comments Module
	Integration
	Ada Beans
	Comment_List_Bean

	Data model

	Settings Module
	Getting a user setting
	Saving a user setting
	Integration
	Data model

	Setup Application
	Integration
	Setup Procedure Instantiation
	Setup Operation

	Tips
	UI Presentation Tips
	Adding a simple page
	Add Open Graph
	Formatting dates

	Configuration Tips
	Adding a permission on user creation
	Secure configuration

	Trouble shotting Tips
	No AWA service context



