
Ada Database Objects Programmer’s
Guide

STEPHANE CARREZ

2021-07-25

Ada Database Objects Programmer’s Guide 2021-07-25

Contents

1 Introduction 4

2 Installation 5
2.1 Before Building . 5
2.2 Database Driver Installation . 5

2.2.1 Ubuntu . 5
2.2.2 Windows . 5

2.3 Configuration . 6
2.4 Build . 7
2.5 Installation . 7
2.6 Using . 8

3 Tutorial 9
3.1 Defining the data model . 9
3.2 Generating the Adamodel and SQL schema . 12
3.3 Getting a Database Connection . 12
3.4 Opening a Session . 13
3.5 Creating a database record . 13
3.6 Loading a database record . 14
3.7 Getting a list of objects . 15
3.8 Running SQL queries . 15

4 Session 17
4.1 Database Drivers . 17

4.1.1 MySQL Database Driver . 18
4.1.2 SQLite Database Driver . 19
4.1.3 PostgreSQL Database Driver . 19

4.2 Connection string . 20
4.3 Session Factory . 20
4.4 Database Caches . 21

5 Database Statements 22
5.1 Query Parameters . 22

5.1.1 Parameter Expander . 23
5.2 Query Statements . 23
5.3 Named Queries . 23

5.3.1 XML Query File . 24

Stephane Carrez 2

Ada Database Objects Programmer’s Guide 2021-07-25

5.3.2 SQL Result Mapping . 24
5.3.3 SQL Queries . 25
5.3.4 Using Named Queries . 26

6 Model Mapping 28
6.1 Table definition . 28
6.2 Columnmapping . 29
6.3 Primary keys . 31
6.4 Relations . 32
6.5 Versions . 32
6.6 Loading Objects . 34
6.7 Modifying Objects . 35
6.8 Deleting Objects . 35
6.9 Sequence Generators . 36

6.9.1 HiLo Sequence Generator . 36

7 Troubleshooting 37
7.1 Change the log configuration . 37
7.2 Handling exceptions . 38

Stephane Carrez 3

Ada Database Objects Programmer’s Guide 2021-07-25

1 Introduction

The Ada Database Objects is an Object Relational Mapping for the Ada05 programming language.
It allows to map database objects into Ada records and access database content easily. The library
supports PostgreSQL, MySQL, SQLite as databases. Most of the concepts developed for ADO come from
the Java Hibernate ORM.

The ORM uses either an XMLmapping file, a YAML file or an UMLmodel, a code generator and a runtime
library for the implementation. It provides a database driver for PostgreSQL, MySQL and SQLite. The
ORM helps your application by providing a mapping of your database tables directly in the target
programming language: Ada05 in our case. The development process is the following:

• You design your databasemodel either using a UML tool or bywriting an XML or YAML description
file,

• You generate the Ada05mapping files by using the Dynamo code generator,
• You generate the SQL database tables by using the same tool,
• You write your application on top of the generated code that gives you direct and simplified
access to your database.

Figure 1: ORM Development Model

This document describes how to build the library and how you can use the di�erent features to simplify
and help you access databases from your Ada application.

Stephane Carrez 4

https://www.postgresql.org/
https://www.mysql.com/
https://www.sqlite.org/
https://github.com/stcarrez/dynamo

Ada Database Objects Programmer’s Guide 2021-07-25

2 Installation

This chapter explains how to build and install the library.

2.1 Before Building

Before building ADO, you will need:

• Ada Utility Library
• XML/Ada
• Either the PostgreSQL, MySQL or SQLite development headers installed.

First get, build and install the XML/Ada and then get, build and install the Ada Utility Library.

2.2 Database Driver Installation

The PostgreSQL, MySQL and SQLite development headers and runtime are necessary for building the
ADO driver. The configure script will use them to enable the ADO drivers. The configure script will fail if
it does not find any database driver.

2.2.1 Ubuntu

MySQL Development installation

1 sudo apt-get install libmysqlclient-dev

MariaDB Development installation

1 sudo apt-get install mariadb-client libmariadb-client-lgpl-dev

SQLite Development installation

1 sudo apt-get install libsqlite3-dev

PostgreSQL Development installation

1 sudo apt-get install postgresql-client libpq-dev

2.2.2 Windows

It is recommended to use msys2 available at https://www.msys2.org/ and use the pacman command
to install the required packages.

Stephane Carrez 5

https://github.com/stcarrez/ada-util
https://libre.adacore.com/libre/tools/xmlada/
https://libre.adacore.com/libre/tools/xmlada/
https://github.com/stcarrez/ada-util

Ada Database Objects Programmer’s Guide 2021-07-25

1 pacman -S git
2 pacman -S make
3 pacman -S unzip
4 pacman -S base-devel --needed
5 pacman -S mingw-w64-x86_64-sqlite3

For Windows, the installation is a little bit more complex andmanual. Youmay either download the
files fromMySQL and SQLite download sites or youmay use the files provided by Ada Database Objects
in the win32 directory.

For Windows 32-bit, extract the files:

1 cd win32 && unzip sqlite-dll-win32-x86-3290000.zip

For Windows 64-bit, extract the files:

1 cd win32 && unzip sqlite-dll-win64-x64-3290000.zip

If your GNAT 2019 compiler is installed in C:/GNAT/2019, you may install the liblzma, MySQL and
SQLite libraries by using msys cp with:

1 cp win32/*.dll C:/GNAT/2019/bin
2 cp win32/*.dll C:/GNAT/2019/lib
3 cp win32/*.lib C:/GNAT/2019/lib
4 cp win32/*.a C:/GNAT/2019/lib

2.3 Configuration

The library uses the configure script to detect the build environment, check which databases are
available and configure everything before building. If some component is missing, the configure
script will report an error. The configure script provides several standard options and youmay use:

• --prefix=DIR to control the installation directory,
• --with-mysql=PATH to control the path where mysql_config is installed,
• --with-ada-util=PATH to control the installation path of Ada Utility Library,
• --enable-mysql to enable the support for MySQL,
• --enable-postgresql to enable the support for PostgreSQL,
• --enable-sqlite to enable the support for SQLite,
• --enable-shared to enable the build of shared libraries,
• --disable-static to disable the build of static libraries,
• --enable-distrib to build for a distribution and strip symbols,

Stephane Carrez 6

https://github.com/stcarrez/ada-util

Ada Database Objects Programmer’s Guide 2021-07-25

• --disable-distrib to build with debugging support,
• --enable-coverage to build with code coverage support (-fprofile-arcs -ftest-
coverage),

• --help to get a detailed list of supported options.

In most cases you will configure with the following command:

1 ./configure

2.4 Build

A�er configuration is successful, you can build the library by running:

1 make

A�er building, it is good practice to run the unit tests before installing the library. The unit tests are
built and executed using:

1 make test

And unit tests are executed by running the bin/ado_harness test program. A configuration file is
necessary to control the test parameters including the test database to be used. To run the tests with a
MySQL database, use the following command:

1 bin/ado_harness -config test-mysql.properties

and with a SQLite database, use the following command:

1 bin/ado_harness -config test-sqlite.properties

2.5 Installation

The installation is done by running the install target:

1 make install

If you want to install on a specific place, you can change the prefix and indicate the installation
direction as follows:

1 make install prefix=/opt

Stephane Carrez 7

Ada Database Objects Programmer’s Guide 2021-07-25

2.6 Using

To use the library in an Ada project, add the following line at the beginning of your GNAT project file:

1 with "ado";
2 with "ado_all";

It is possible to use only a specific database driver, in that case your GNAT project file could be defined
as follows:

1 with "ado";
2 with "ado_mysql";
3 with "ado_sqlite";
4 with "ado_postgresql";

where the ado_mysql, ado_sqlite and ado_postgresql are optional and included according to
your needs.

Stephane Carrez 8

Ada Database Objects Programmer’s Guide 2021-07-25

3 Tutorial

This small tutorial explains how an application can access a database (PostgreSQL, MySQL or SQLite)
to store its data by using the Ada Database Objects framework. The framework has several similarities
with the excellent Hibernate Java framework.

The ADO framework is composed of:

• A code generator provided by Dynamo,
• A core runtime,
• A set of database drivers (PostgreSQL, MySQL, SQLite).

The tutorial application is a simple user management database which has only one table.

3.1 Defining the datamodel

The first step is to design the data model. You have the choice with:

• Using an UMLmodeling tool such as ArgoUML,
• Writing an XML file following the Hibernate description,
• Writing a YAML description according to the Doctrine mapping.

In all cases, the model describes the data table as well as how the di�erent columns are mapped to an
Ada type. Themodel can also describe the relations between tables. XML and YAML data model files
should be stored in the db directory.

Let’s define a mapping for a simple user table and save it in db/user.hbm.xml:

1 <?xml version="1.0" encoding="UTF-8"?>
2 <hibernate-mapping default-cascade="none">
3 <class name="Samples.User.Model.User"
4 table="user" dynamic-insert="true" dynamic-update="true">
5 <comment>Record representing a user</comment>
6 <id name="id" type="ADO.Identifier" unsaved-value="0">
7 <comment>the user identifier</comment>
8 <column name="id" not-null="true" unique="true" sql-type="

BIGINT"/>
9 <generator class="sequence"/>
10 </id>
11 <version name="version" type="int" column="object_version" not-

null="true"/>
12 <property name="name" type="String">
13 <comment>the user name</comment>
14 <column name="name" not-null="true" unique="false" sql-type

="VARCHAR(256)"/>

Stephane Carrez 9

http://www.hibernate.org/
https://github.com/stcarrez/dynamo
https://github.com/argouml-tigris-org/argouml
https://www.hibernate.org/
https://www.doctrine-project.org/projects/doctrine-orm/en/2.6/reference/yaml-mapping.html

Ada Database Objects Programmer’s Guide 2021-07-25

15 </property>
16 <property name="email" type="String" unique='true'>
17 <comment>the user email</comment>
18 <column name="email" not-null="true" unique="false" sql-

type="VARCHAR(256)"/>
19 </property>
20 <property name="date" type="String">
21 <comment>the user registration date</comment>
22 <column name="date" not-null="true" unique="false" sql-type

="VARCHAR(256)"/>
23 </property>
24 <property name="description" type="String">
25 <comment>the user description</comment>
26 <column name="description" not-null="true" unique="false"

sql-type="VARCHAR(256)"/>
27 </property>
28 <property name="status" type="Integer">
29 <comment>the user status</comment>
30 <column name="status" not-null="true" unique="false" sql-

type="Integer"/>
31 </property>
32 </class>
33 </hibernate-mapping>

The YAML description is sometimes easier to understand and write and the content could be saved in
the db/users.yaml file.

1 Samples.User.Model.User:
2 type: entity
3 table: user
4 description: Record representing a user
5 hasList: true
6 indexes:
7 id:
8 id:
9 type: identifier
10 column: id
11 not-null: true
12 unique: true
13 description: the user identifier
14 fields:
15 version:
16 type: integer

Stephane Carrez 10

Ada Database Objects Programmer’s Guide 2021-07-25

17 column: object_version
18 not-null: true
19 version: true
20 unique: false
21 description:
22 name:
23 type: string
24 length: 255
25 column: name
26 not-null: true
27 unique: false
28 description: the user name
29 email:
30 type: string
31 length: 255
32 column: email
33 not-null: true
34 unique: false
35 description: the user email
36 date:
37 type: string
38 length: 255
39 column: date
40 not-null: true
41 unique: false
42 description: the user registration date
43 description:
44 type: string
45 length: 255
46 column: description
47 not-null: true
48 unique: false
49 description: the user description
50 status:
51 type: integer
52 column: status
53 not-null: true
54 unique: false
55 description: the user status

These XML and YAMLmapping indicate that the database table user is represented by the User tagged
record declared in the Samples.User.Model package. The table contains a name, description,

Stephane Carrez 11

Ada Database Objects Programmer’s Guide 2021-07-25

email and adate columnmemberswhich are a string. It also has astatus columnwhich is an integer.
The table primary key is represented by the id column. The version column is a special column used
by the optimistic locking.

3.2 Generating the Adamodel and SQL schema

The Dynamo code generator is then used to generate the package and Ada records that represent our
data model. The generator also generates the database SQL schema so that tables can be created
easily in the database.

1 dynamo generate db

The generator will build the package specification and body for Samples.User.Model package. The
files are created in src/model to make it clear that these files are model files that are generated. The
database table user is represented by the Ada tagged record User_Ref. The record members are not
visible and to access the attributes it is necessary to use getter or setter operations.

The SQL files are generated for every supported database in the db/mysql, db/sqlite and db/
postgresql directories. The generator generates two SQL files in each directory:

• A first SQL file that allows to create the tables in the database. The file name uses the pattern
create-name-driver.

• A second SQL file that contains DROP statements to erase the database tables. The file name uses
the pattern drop-name-driver.

When you modify the UML, XML or YAML model files, you should generate again the Ada and SQL
files. Even though these files can be generated, it is recommended to store these generated files in a
versioning systems such as git because this helps significantly in tracking changes in the data model.

3.3 Getting a Database Connection

To access the database, we will need a database connection. These connections are obtained from a
factory and they are represented by a session object.

The session factory is the entry point to obtain a database session.

1 with ADO.Sessions;
2 with ADO.Sessions.Factory;
3 ...
4 Factory : ADO.Sessions.Factory.Session_Factory;

Stephane Carrez 12

https://github.com/stcarrez/dynamo

Ada Database Objects Programmer’s Guide 2021-07-25

The factory can be initialized by giving a URI string that identifies the driver and the information to
connect to the database. Once created, the factory returns a session object to connect to that database.
To connect to another database, another factory is necessary.

To get access to a MySQL database, the factory could be initialized as follows:

1 ADO.Sessions.Factory.Create (Factory, "mysql://localhost:3306/
ado_test?user=test");

And to use an SQLite database, you could use:

1 ADO.Sessions.Factory.Create (Factory, "sqlite:///tests.db");

For a PostgreSQL database, the factory would look like:

1 ADO.Sessions.Factory.Create (Factory, "postgresql://localhost:5432/
ado_test?user=test");

Factory initialization is done once when an application starts. The same factory object can be used by
multiple tasks.

3.4 Opening a Session

The session is createdbyusing theGet_Sessionor theGet_Master_Session function of the factory.
Both function return a session object associated with a database connection. The Get_Session
will return a Session object which is intended to provide read-only access to the database. The
Get_Master_session returns a Master_Session object which provides a read-write access to the
database.

In a typical MySQL Master/Slave replication, the Master_Sessionwill refer to a connection to the
MySQLmaster while the Sessionwill refer to a slave. With an SQLite database, both sessions will in
fact share the same SQLite internal connection.

To load or save the user object in the database, we need a Master_Session database connection:

1 with ADO.Sessions;
2 ...
3 Session : ADO.Sessions.Master_Session := Factory.Get_Master_Session;

3.5 Creating a database record

To create our first database record, we will declare a variable that will represent the new database
record. The User_Ref represents a reference to such record.

Stephane Carrez 13

Ada Database Objects Programmer’s Guide 2021-07-25

1 with Samples.User.Model;
2 ...
3 User : Samples.User.Model.User_Ref

A�er this declaration, the variable does not refer to any database record but we can still set some fields:

1 User.Set_Name ("Harry");
2 User.Set_Age (17);

To save the object in the database, we just need to call the Save operation. To save the object, we
need a database session that is capable of updating and inserting new rows. If the object does not
yet have a primary key, and if the primary key allocation mode is set to hilo, the ADO runtime will
allocate a new unique primary key before inserting the new row.

1 User.Save (Session);

The primary key can be obtained a�er the first Savewith the following operation:

1 Id : ADO.Identifier := User.Get_Id;

3.6 Loading a database record

Loading a database record is quite easy and the ADO framework proposes twomechanisms. First, let’s
declare our user variable:

1 Harry : User_Ref;

Then we can load the user record from the primary key identifier (assuming the identifier is “’23”’):

1 Harry.Load (Session, 23);

If the user cannot be found, the Load operation will raise the NOT_FOUND exception.

In many cases, we may not know the primary key but a search on one or several columns may be
necessary. For this, we can create a query filter and use the Find operation. To use a query filter, we
need first to declare a Query object:

1 with ADO.SQL;
2 ...
3 Query : ADO.SQL.Query;

Stephane Carrez 14

Ada Database Objects Programmer’s Guide 2021-07-25

On the query object, we have to define the filter which represents the condition and set the possible
parameters used by the filter.

1 Query.Bind_Param (1, "Harry");
2 Query.Set_Filter ("name = ?");

Once the query is defined and initialized, we can find the database record:

1 Found : Boolean;
2 ...
3 User.Find (Session, Query, Found);

Unlike the Load operation, Find does not raise an exception but instead returns a boolean value telling
whether the record was found or not. The database query (and filter) has to return exactly one record
to consider the object as found.

3.7 Getting a list of objects

When several records have to be read, it is necessary to use the List operation together with a vector
object.

1 Users : User_Vector;

The List operation gets the vector object, the database session and the query filter. If the vector
contained some elements, they are removed and replaced by the query result.

1 List (Users, Session, Query);

3.8 Running SQL queries

Sometimes it is necessary to execute SQL queries to be able to get the result without having it to be
mapped to an Ada record. For this, we are going to use the ADO.Statements

1 with ADO.Statements;
2 ...
3 Statement : ADO.Statements.Query_Statement := Session.

Create_Statement ("SELECT COUNT(*) FROM user");

and then execute it and retrieve the result.

1 Statement.Execute;

Stephane Carrez 15

Ada Database Objects Programmer’s Guide 2021-07-25

2 if not Statement.Has_Elements then
3 Put_Line ("SQL count() failed")
4 else
5 Put_Line (Integer'Image (Statement.Get_Integer (0)));
6 end if;

Stephane Carrez 16

Ada Database Objects Programmer’s Guide 2021-07-25

4 Session

The ADO.Sessions package defines the control andmanagement of database sessions. The database
session is represented by the Session or Master_Session types. It provides operation to create a
database statement that can be executed. The Session type is used to represent read-only database
sessions. It provides operations to query the database but it does not allow to update or delete
content. The Master_Session type extends the Session type to provide write access and it provides
operations to get update or delete statements. The di�erentiation between the two sessions is provided
for the support of database replications with databases such as MySQL.

4.1 Database Drivers

Database drivers provide operations to access the database. These operations are specific to the
database type and the ADO.Drivers package among others provide an abstraction that allows to
make the di�erent databases look like they have almost the same interface.

A database driver exists for SQLite, MySQL and PostgreSQL. The driver is either statically linked to the
application or it can be loaded dynamically if it was built as a shared library. For a dynamic load, the
driver shared library namemust be prefixed by libada_ado_. For example, for a mysql driver, the
shared library name is libada_ado_mysql.so.

Driver name Database

mysql MySQL, MariaDB

sqlite SQLite

postgresql PostgreSQL

The database drivers are initialized automatically but in some cases, youmay want to control some
database driver configuration parameter. In that case, the initialization must be done only once before
creating a session factory and getting a database connection. The initialization can bemade using a
property file which contains the configuration for the database drivers and the database connection
properties. For such initialization, you will have to call one of the Initialize operation from the
ADO.Drivers package.

1 ADO.Drivers.Initialize ("db.properties");

The set of configuration properties can be set programatically and passed to the Initialize opera-
tion.

Stephane Carrez 17

Ada Database Objects Programmer’s Guide 2021-07-25

1 Config : Util.Properties.Manager;
2 ...
3 Config.Set ("ado.database", "sqlite:///mydatabase.db");
4 Config.Set ("ado.queries.path", ".;db");
5 ADO.Drivers.Initialize (Config);

Once initialized, a configuration property can be retrieved by using the Get_Config operation.

1 URI : constant String := ADO.Drivers.Get_Config ("ado.database");

Dynamic loading of database drivers is disabled by default for security reasons and it can be enabled
by setting the following property in the configuration file:

1 ado.drivers.load=true

Dynamic loading is triggered when a database connection string refers to a database driver which is
not known.

4.1.1 MySQL Database Driver

TheMySQL database driver can be initialize explicitly by using the ado_mysqlGNAT project and calling
the initialization procedure.

1 ADO.Mysql.Initialize ("db.properties");

The set of configuration properties can be set programatically and passed to the Initialize opera-
tion.

1 Config : Util.Properties.Manager;
2 ...
3 Config.Set ("ado.database", "mysql://localhost:3306/ado_test");
4 Config.Set ("ado.queries.path", ".;db");
5 ADO.Mysql.Initialize (Config);

The MySQL database driver supports the following properties:

Name Description

user The user name to connect to the server

password The user password to connect to the server

Stephane Carrez 18

Ada Database Objects Programmer’s Guide 2021-07-25

Name Description

socket The optional Unix socket path for a Unix socket base connection

encoding The encoding to be used for the connection (ex: UTF-8)

4.1.2 SQLite Database Driver

The SQLite database driver can be initialize explicitly by using the ado_mysqlGNAT project and calling
the initialization procedure.

1 ADO.Sqlite.Initialize ("db.properties");

The set of configuration properties can be set programatically and passed to the Initialize opera-
tion.

1 Config : Util.Properties.Manager;
2 ...
3 Config.Set ("ado.database", "sqlite:///regtests.db?synchronous=OFF&

encoding=UTF-8");
4 Config.Set ("ado.queries.path", ".;db");
5 ADO.Sqlite.Initialize (Config);

The SQLite database driver will pass all the properties as SQLite pragma allowing the configuration of
the SQLite database.

4.1.3 PostgreSQL Database Driver

The PostgreSQL database driver can be initialize explicitly by using the ado_mysql GNAT project and
calling the initialization procedure.

1 ADO.Postgresql.Initialize ("db.properties");

The set of configuration properties can be set programatically and passed to the Initialize opera-
tion.

1 Config : Util.Properties.Manager;
2 ...
3 Config.Set ("ado.database", "postgresql://localhost:5432/ado_test?

user=ado&password=ado");
4 Config.Set ("ado.queries.path", ".;db");
5 ADO.Postgresql.Initialize (Config);

Stephane Carrez 19

Ada Database Objects Programmer’s Guide 2021-07-25

The PostgreSQL database driver supports the following properties:

Name Description

user The user name to connect to the server

password The user password to connect to the server

4.2 Connection string

The database connection string is an URI that specifies the database driver to use as well as the
information for the database driver to connect to the database. The driver connection is a string of the
form:

1 driver://[host][:port]/[database][?property1][=value1]...

The database connection string is passed to the session factory that maintains connections to the
database (see ADO.Sessions.Factory).

4.3 Session Factory

The session factory is the entry point to obtain a database session. The ADO.Sessions.Factory
package defines the factory for creating sessions.

1 with ADO.Sessions.Factory;
2 ...
3 Sess_Factory : ADO.Sessions.Factory;

The session factory can be initialized by using the Create operation and by giving a URI string that
identifies the driver and the information to connect to the database. The session factory is created
only once when the application starts.

1 ADO.Sessions.Factory.Create (Sess_Factory, "mysql://localhost:3306/
ado_test?user=test");

Having a session factory, one can get a database by using theGet_Session orGet_Master_Session
function. Each time this operation is called, a new session is returned. The session is released when
the session variable is finalized.

1 DB : ADO.Sessions.Session := Sess_Factory.Get_Session;

Stephane Carrez 20

Ada Database Objects Programmer’s Guide 2021-07-25

The session factory is also responsible for maintaining some data that is shared by all the database
connections. This includes:

• the sequence generators used to allocate unique identifiers for database tables,

• the entity cache,

• some application specific global cache.

4.4 Database Caches

The ADO cachemanager allows to create andmaintain cache of values and use the cache from the SQL
expander to replace cached values before evaluating the SQL. The SQL expander identifies constructs
as follows:

1 $cache_name[entry-name]

and look for the cache identified by cache_name and then replace the cache entry registered with the
name entry-name.

The cache manager is represented by the Cache_Manager type and the database session contains one
cache manager. Applications may use their own cache in that case they will declare their cache as
follows:

1 M : ADO.Caches.Cache_Manager;

A cache group is identified by a unique name and is represented by the Cache_Type base class. The
cache group instance is registered in the cache manager by using the Add_Cache operation.

Stephane Carrez 21

Ada Database Objects Programmer’s Guide 2021-07-25

5 Database Statements

The ADO.Statements package provides high level operations to construct database statements and
execute them. They allow to represent SQL statements (prepared or not) and provide support to
execute them and retreive their result. The SQL statements are represented by several Ada types
depending on their behavior:

• The Statement type represents the base type for all the SQL statements.

• The Query_Statement type is intended to be used for database query statements and provides
additional operations to retrieve results.

• The Update_Statement type targets the database update statements and it provides specific
operations to update fields. The Insert_Statement extends the Update_Statement type
and is intended for database insertion.

• The Delete_Statement type is intended to be used to remove elements from the database.

The database statements are created by using the database session and by providing the SQL or the
named query to be used.

5.1 Query Parameters

Query parameters are represented by the Parameter type which can represent almost all database
types including boolean, numbers, strings, dates and blob. Parameters are put in a list represented by
the Abstract_List or List types.

A parameter is added by using either the Bind_Param or the Add_Param operation. The Bind_Param
operation allows to specify either the parameter name or its position. The Add_Param operation adds
the parameter at end of the list and uses the last position. Inmost cases, it is easier to bind a parameter
with a name as follows:

1 Query.Bind_Param ("name", "Joe");

and the SQL can use the following construct:

1 SELECT * FROM user WHERE name = :name

When the Add_Param is used, the parameter is not associated with any name but it as a position index.
Setting a parameter is easier:

1 Query.Add_Param ("Joe");

but the SQL cannot make any reference to names andmust use the ? construct:

Stephane Carrez 22

Ada Database Objects Programmer’s Guide 2021-07-25

1 SELECT * FROM user WHERE name = ?

5.1.1 Parameter Expander

The parameter expander is a mechanism that allows to replace or inject values in the SQL query
by looking at an operation provided by the Expander interface. Such expander is useful to replace
parameters that are global to a session or to an application.

5.2 Query Statements

Thedatabasequery statement is representedby theQuery_Statement type. TheCreate_Statement
operation is provided on the Session type and it gets the SQL to execute as parameter. For example:

1 Stmt : ADO.Statements.Query_Statement := Session.Create_Statement
2 ("SELECT * FROM user WHERE name = :name");

A�er the creation of the query statement, the parameters for the SQL query are provided by using
either the Bind_Param or Add_Param procedures as follows:

1 Stmt.Bind_Param ("name", name);

Once all the parameters are defined, the query statement is executedby calling theExecuteprocedure:

1 Stmt.Execute;

Several operations are provided to retrieve the result. First, the Has_Elements function will indicate
whether some database rows are available in the result. It is then possible to retrieve each row and
proceed to the next one by calling the Next procedure. The number of rows is also returned by the
Get_Row_Count function. A simple loop to iterate over the query result looks like:

1 while Stmt.Has_Elements loop
2 Id := Stmt.Get_Identifier (1);
3 ...
4 Stmt.Next;
5 end loop;

5.3 Named Queries

Ada Database Objects provides a small framework which helps in using complex SQL queries in an
application by using named queries. The benefit of the framework are the following:

Stephane Carrez 23

Ada Database Objects Programmer’s Guide 2021-07-25

• The SQL query result are directly mapped in Ada records,

• It is easy to change or tune an SQL query without re-building the application,

• The SQL query can be easily tuned for a given database.

The database query framework uses an XML query file:

• The XML query file defines a mapping that represents the result of SQL queries,

• The XMLmapping is used by Dynamo code generator to generate an Ada record,

• The XML query file also defines a set of SQL queries, each query being identified by a unique
name,

• The XML query file is read by the application to obtain the SQL query associated with a query
name,

• The application uses the List procedure generated by Dynamo.

5.3.1 XML Query File

TheXMLquery fileuses thequery-mapping root element. It shoulddefineatmostoneclassmapping
and several query definitions. The class definition should come first before any query definition.

1 <query-mapping>
2 <class>...</class>
3 <query>...</query>
4 </query-mapping>

5.3.2 SQL Result Mapping

The XML query mapping is very close to the database XML table mapping. The di�erence is that there
is no need to specify any table name nor any SQL type. The XML query mapping is used to build an Ada
record that correspond to query results. Unlike the database table mapping, the Ada record will not be
tagged and its definition will expose all the record members directly.

The following XML query mapping:

1 <query-mapping>
2 <class name='Samples.Model.User_Info'>
3 <property name="name" type="String">
4 <comment>the user name</comment>
5 </property>
6 <property name="email" type="String">

Stephane Carrez 24

Ada Database Objects Programmer’s Guide 2021-07-25

7 <comment>the email address</comment>
8 </property>
9 </class>
10 </query-mapping>

will generate the following Ada record and it will instantiate the Ada container Vectors generic to
provide a support for vectors of the record:

1 package Samples.Model is
2 type User_Info is record
3 Name : Unbounded_String;
4 Email : Unbounded_String;
5 end record;
6 package User_Info_Vectors is
7 new Ada.Containers.Vectors (Index_Type => Natural,
8 Element_Type => User_Info,
9 "=" => "=");
10 subtype User_Info_Vector is User_Info_Vectors.Vector;
11 end Samples.Model;

A List operation is also generated and can be used to execute an SQL query and have the result
mapped in the record.

The same query mapping can be used by di�erent queries.

A�er writing or updating a query mapping, it is necessary to launch the Dynamo code generator to
generate the corresponding Adamodel.

5.3.3 SQL Queries

The XML query file defines a list of SQL queries that the application can use. Each query is associated
with a unique name. The application will use that name to identify the SQL query to execute. For each
query, the file also describes the SQL query pattern that must be used for the query execution.

1 <query-mapping>
2 <query name='user-list' class='Samples.Model.User_Info'>
3 <sql driver='mysql'>
4 SELECT u.name, u.email FROM user AS u
5 </sql>
6 <sql driver='sqlite'>
7 ...
8 </sql>
9 <sql-count driver='mysql'>

Stephane Carrez 25

Ada Database Objects Programmer’s Guide 2021-07-25

10 SELECT COUNT(*) FROM user AS u
11 </sql-count>
12 </query>
13 </query-mapping>

The query contains basically two SQL patterns. The sql element represents the main SQL pattern.
This is the SQL that is used by the List operation. In some cases, the result set returned by the query
is limited to return only a maximum number of rows. This is o�en use in paginated lists.

The sql-count element represents an SQL query to indicate the total number of elements if the SQL
query was not limited.

The sql and sql-count XML element can have an optional driver attribute. When defined, the
attribute indicates the database driver name that is specific to the query. When empty or not defined,
the SQL is not specific to a database driver.

For each query, the Dynamo code generator generates a query definition instance which can be used in
the Ada code to be able to use the query. Such instance is static and readonly and serves as a reference
when using the query. For the above query, the Dynamo code generator generates:

1 package Samples.User.Model is
2 Query_User_List : constant ADO.Queries.Query_Definition_Access;
3 private
4 ...
5 end Samples.User.Model;

When a new query is added, the Dynamo code generator must be launched to update the generated
Ada code.

5.3.4 Using Named Queries

In order to use a named query, it is necessary to create a query context instance and initialize it. The
query context holds the information about the query definition as well as the parameters to execute
the query. It provides a Set_Query and Set_Count_Query operation that allows to configure the
named query to be executed. It also provides all the Bind_Param and Add_Param operations to allow
giving the query parameters.

1 with ADO.Sessions;
2 with ADO.Queries;
3 ...
4 Session : ADO.Sessions.Session := Factory.Get_Session;
5 Query : ADO.Queries.Context;

Stephane Carrez 26

Ada Database Objects Programmer’s Guide 2021-07-25

6 Users : Samples.User.Model.User_Info_Vector;
7 ...
8 Query.Set_Query (Samples.User.Model.Query_User_List);
9 Samples.User.Model.List (Users, Session, Query);

To use the sql-count part of the query, you will use the Set_Count_Query with the same query
definition. You will then create a query statement from the named query context and run the query.
Since the query is expected to contain exactly one row, you can use the Get_Result_Integer to get
the first row and column result. For example:

1 Query.Set_Count_Query (Samples.User.Model.Query_User_List);
2 ...
3 Stmt : ADO.Statements.Query_Statement
4 := Session.Create_Statement (Query);
5 ...
6 Stmt.Execute;
7 ...
8 Count : Natural := Stmt.Get_Result_Integer;

Youmay also use the ADO.Datasets.Get_Count operation which simplifies these steps in:

1 Query.Set_Count_Query (Samples.User.Model.Query_User_List);
2 ...
3 Count : Natural := ADO.Datasets.Get_Count (Session, Query);

Stephane Carrez 27

Ada Database Objects Programmer’s Guide 2021-07-25

6 Model Mapping

A big benefit when using ADO is the model mapping with the Ada and SQL code generator.

The model describes the database tables, their columns and relations with each others. It is then used
to generate the Ada implementation which provides operations to create, update and delete records
from the database andmap them in Ada transparently.

The model can be defined in:

• UML with a modeling tool that exports the model in XMI,
• XML files following the Hibernate description,
• YAML files according to the Doctrine mapping.

This chapter focuses on the YAML description.

6.1 Table definition

In YAML, the type definition follows the pattern below:

1 <table-type-name>:
2 type: entity
3 table: <table-name>
4 description: <description>
5 hasList: true|false
6 indexes:
7 id:
8 fields:
9 oneToOne:
10 oneToMany:

The table-type-name represents the Ada type name with the full package specification. The code
generator will add the _Ref prefix to the Ada type name to define the final typewith reference counting.
A private type is also generated with the _Impl prefix.

The YAML fields have the following meanings:

Field Description

type Must be “entity” to describe a database table

table The name of the database table. This must be a valid SQL name

description A comment description for the table and type definition

hasList When true, a List operation is also generated for the type

Stephane Carrez 28

http://www.hibernate.org/
https://www.doctrine-project.org/projects/doctrine-orm/en/2.6/reference/yaml-mapping.html

Ada Database Objects Programmer’s Guide 2021-07-25

Field Description

indexes Defines the indexes for the table

id Defines the primary keys for the table

fields Defines the simple columns for the table

oneToOne Defines the one to one table relations

oneToMany Defines the one to many table relations

6.2 Columnmapping

Simple columns are represented within the fields section.

1 <table-type-name>:
2 fields:
3 <member-name>:
4 type: <type>
5 length: <length>
6 description: <description>
7 column: <column-name>
8 not-null: true|false
9 unique: true|false
10 readonly: true|false
11 version: false

The YAML fields have the following meanings:

Field Description

type The column type. This type maps to an Ada type and an SQL type

length For variable length columns, this is the maximum length of the column

description A comment description for the table and type definition

column The database table column name

not-null When true, indicates that the column cannot be null

unique When true, indicates that the columnmust be unique in the table rows

readonly When true, the column cannot be updated. The Save operation will ignore
updated.

Stephane Carrez 29

Ada Database Objects Programmer’s Guide 2021-07-25

Field Description

version Must be “false” for simple columns

The type column describes the type of the column using a string that is agnostic of the Ada and SQL
languages. Themapping of the type to SQL depends on the database. The not-null definition has an
impact on the Ada type since when the column can be null, a special Ada type is required to represent
that null value.

The ADO.Nullable_X types are all represented by the following record:

1 type Nullable_X is record
2 Value : X := <default-value>;
3 Is_Null : Boolean := True;
4 end record;

The Is_Null boolean member must be checked to see if the value is null or not. The comparison
operation (=) ignores the Value comparison when one of the record to compare has Is_Null set.

Type not-null SQL Ada

boolean true TINYINT Boolean

false TINYINT ADO.Nullable_Boolean

byte true TINYINT -

false TINYINT -

integer true INTEGER Integer

false INTEGER ADO.Nullable_Integer

long true BIGINT Long_Long_Integer

false BIGINT ADO.Nullable_Long_Integer

identifier BIGINT ADO.Identifier

entity_type true INTEGER ADO.Entity_Type

false INTEGER ADO.Nullable_Entity_Type

string true VARCHAR(N) Unbounded_String

false VARCHAR(N) ADO.Nullable_String

date true DATE Ada.Calendar.Time

Stephane Carrez 30

Ada Database Objects Programmer’s Guide 2021-07-25

Type not-null SQL Ada

false DATE ADO.Nullable_Time

time true DATETIME Ada.Calendar.Time

false DATETIME ADO.Nullable_Time

blob BLOB ADO.Blob_Ref

The identifier type is used to represent a foreign key mapped to a BIGINT in the database. It is
always represented by the Ada type ADO.Identifier and the null value is represented by the special
value ADO.NO_IDENTIFIER.

The blob type is represented by an Ada stream array held by a reference counted object. The reference
can be null.

The entity_type type allows to uniquely identify the type of a database entity. Each database table
is associated with an entity_type unique value. Such value is created statically when the database
schema is created and populated in the database. The entity_type values are maintained in the
entity_type ADO database table.

6.3 Primary keys

Primary keys are used to uniquely identify a row within a table. For the ADO framework, only the
identifier and string primary types are supported.

1 <table-type-name>:
2 id:
3 <member-name>:
4 type: {identifier|string}
5 length: <length>
6 description: <description>
7 column: <column-name>
8 not-null: true
9 unique: true
10 version: false
11 generator:
12 strategy: {none|auto|sequence}

The generator section describes how the primary key is generated.

Stephane Carrez 31

Ada Database Objects Programmer’s Guide 2021-07-25

Strategy description

none the primary key is managed by the application

auto use the database auto increment support

sequence use the ADO sequence generator

6.4 Relations

A one to many relation is described by the following YAML description:

1 <table-type-name>:
2 oneToMany:
3 <member-name>:
4 type: <model-type>
5 description: <description>
6 column: <column-name>
7 not-null: true|false
8 readonly| true|false

This represents the foreign key and this YAML description is to be put in the table that holds it.

The type definition describes the type of object at the end of the relation. This can be the identifier
type which means the relation will not be strongly typed andmapped to the ADO.Identifier type.
But it can be the table type name used for another table definition. In that case, the code generator
will generate a getter and setter that will use the object reference instance.

Circular dependencies are allowed within the same Ada package. That is, two tables can reference
each other as long as they are defined in the same Ada package. A relation can use a reference of a
type declared in another YAML description from another Ada package. In that case, with clauses are
generated to import them.

6.5 Versions

Optimistic locking is a mechanism that allows updating the same database record from several trans-
actions without having to take a strong row lock that would block transactions. By having a version
column that is incremented a�er each change, it is possible to detect that the database row was
modified when we want to update it. When this happens, the optimistic lock exception ADO.Objects
.LAZY_LOCK is raised and it is the responsibility of the application to handle the failure by retrying the
update.

Stephane Carrez 32

Ada Database Objects Programmer’s Guide 2021-07-25

For the optimistic locking to work, a special integer based columnmust be declared.

1 <table-type-name>:
2 fields:
3 <member-name>:
4 type: <type>
5 description: <description>
6 column: <column-name>
7 not-null: true
8 unique: false
9 version: true

The generated Ada code gives access to the version value but it does not allow its modification. The
version column is incremented only by the Save procedure and only if at least one field of the record
was modified (otherwise the Save has no e�ect). The version number starts with the value 1. ##
Objects When a database table is mapped into an Ada object, the application holds a reference to that
object through the Object_Ref type. The Object_Ref tagged type is the root type of any database
record reference. Reference counting is used so that the object can be stored, shared and the memory
management is handled automatically. It defines generic operations to be able to:

• load the database record andmap it to the Ada object,

• save the Ada object into the database either by inserting or updating it,

• delete the database record.

The Dynamo code generator will generate a specific tagged type for each database table that ismapped.
These tagged type will inherit from the Object_Ref and will implement the required abstract oper-
ations. For each of them, the code generator will generate the Get_X and Set_X operation for each
columnmapped in Ada.

Before the Object_Ref is a reference, it does not hold the database record itself. The ADO.Objects.
Object_Record tagged record is used for that and it defines the root type for themodel representation.
The type provides operations to modify a data field of the record while tracking its changes so that
when the Save operation is called, only the data fields that have been modified are updated in the
database. An application will not use nor access the Object_Record. The Dynamo code generator
generates a private type to make sure it is only accessed through the reference.

Several predicate operations are available to help applications check the validity of an object reference:

Function Description

Is_Null When returning True, it indicates the reference is NULL.

Stephane Carrez 33

Ada Database Objects Programmer’s Guide 2021-07-25

Function Description

Is_Loaded When returning True, it indicates the object was loaded from the database.

Is_Inserted When returning True, it indicates the object was inserted in the database.

Is_Modified When returning True, it indicates the object was modified andmust be saved.

Let’s assume we have a User_Refmapped record, an instance of the reference would be declared as
follows:

1 with Samples.User.Model;
2 ...
3 User : Samples.User.Model.User_Ref;

A�er this declaration, the reference is null and the following assumption is true:

1 User.Is_Null and not User.Is_Loaded and not User.Is_Inserted

If we set a data field such as the name, an object is allocated and the reference is no longer null.

1 User.Set_Name ("Ada Lovelace");

A�er this statement, the following assumption is true:

1 not User.Is_Null and not User.Is_Loaded and not User.Is_Inserted

With this, it is therefore possible to identify that this object is not yet saved in the database. A�er calling
the Save procedure, a primary key is allocated and the following assumption becomes true:

1 not User.Is_Null and not User.Is_Loaded and User.Is_Inserted

6.6 Loading Objects

Three operations are generated by the Dynamo code generator to help in loading a object from the
database: two Load procedures and a Find procedure. The Load procedures are able to load an
object by using its primary key. Two forms of Load are provided: one that raises the ADO.Objects.
NOT_FOUND exception and another that returns an additional Found boolean parameter. Within the
application, if the database row is expected to exist, the first form should be used. In other cases, when
the application expects that the database record may not exist, the second form is easier and avoids
raising and handling an exception for a common case.

Stephane Carrez 34

Ada Database Objects Programmer’s Guide 2021-07-25

1 User.Load (Session, 1234);

The Find procedure allows to retrieve a database record by specifying a filter. The filter object is
represented by the ADO.SQL.Query tagged record. A simple query filter is declared as follows:

1 Filter : ADO.SQL.Query;

The filter is an SQL fragment that is inserted within the WHERE clause to find the object record. The
filter can use parameters that are configured by using the Bind_Param or Add_Param operations. For
example, to find a user from its name, the following filter could be set:

1 Filter.Set_Filter ("name = :name");
2 Filter.Bind_Param ("name", "Ada Lovelace");

Once the query filter is initialized and configured with its parameters, the Find procedure can be
called:

1 Found : Boolean;
2 ...
3 User.Find (Session, Filter, Found);

The Find procedure does not raise an exception if the database record is not found. Instead, it returns
a boolean status in the Found output parameter. The Find procedure will execute an SQL SELECT
statement with a WHERE clause to retrieve the database record. The Found output parameter is set
when the query returns exactly one row.

6.7 Modifying Objects

To modify an object, applications will use one of the Set_X operation generated for each mapped
column. The ADO runtime will keep track of which data fields are modified. The Save procedure must
be called to update the database record. When calling it, an SQL UPDATE statement is generated to
update the modified data fields.

1 User.Set_Status (1);
2 User.Save (Session);

6.8 Deleting Objects

Deleting objects is made by using the Delete operation.

Stephane Carrez 35

Ada Database Objects Programmer’s Guide 2021-07-25

1 User.Delete (Session);

Sometimes youmay want to delete an object without having to load it first. This is possible by delete
an object without loading it. For this, set the primary key on the object and call the Delete operation:

1 User.Set_Id (42);
2 User.Delete (Session);

6.9 Sequence Generators

The sequence generator is responsible for creating unique ID’s across all database objects.

Each table can be associated with a sequence generator. The sequence factory is shared by several
sessions and the implementation is thread-safe.

The HiLoGenerator implements a simple High Low sequence generator by using sequences that
avoid to access the database.

Example:

1 F : Factory;
2 Id : Identifier;
3 ...
4 Allocate (Manager => F, Name => "user", Id => Id);

6.9.1 HiLo Sequence Generator

The HiLo sequence generator. This sequence generator uses a database table sequence to allocate
blocks of identifiers for a given sequencename. The sequence table contains one row for each sequence.
It keeps track of the next available sequence identifier (in the ‘value column).

To allocate a sequence block, the HiLo generator obtains the next available sequence identified and
updates it by adding the sequence block size. The HiLo sequence generator will allocate the identifiers
until the block is full a�er which a new block will be allocated.

Stephane Carrez 36

Ada Database Objects Programmer’s Guide 2021-07-25

7 Troubleshooting

7.1 Change the log configuration

The ADO runtime uses the logging framework provided by Ada Utility Library. By default, logging
messages are disabled and the logging framework has a negligeable impact on performance (less than
1 us per log).

You can customize the logging framework so that you activate logs according to your needs. In the full
mode, the ADO runtime will report the SQL statements which are executed.

To control the logging, add or update the following definitions in a property file:

1 log4j.rootCategory=DEBUG,console,result
2
3 log4j.appender.console=Console
4 log4j.appender.console.level=WARN
5 log4j.appender.console.layout=level-message
6
7 log4j.appender.result=File
8 log4j.appender.result.File=test.log
9
10 # Logger configuration
11 log4j.logger.ADO=INFO,result
12 log4j.logger.ADO.Sessions=WARN
13 log4j.logger.ADO.Statements=DEBUG

The logging framework is configured by using the Util.Log.Logging.Initialize operation:

1 Util.Log.Loggers.Initialize ("config.properties");

which can be executed from any place (but the best place is during the application start).

You can also configure the logger in Ada by using the following code:

1 with Util.Properties;
2 ...
3 Log_Config : Util.Properties.Manager;
4 ...
5 Log_Config.Set ("log4j.rootCategory", "DEBUG,console");
6 Log_Config.Set ("log4j.appender.console", "Console");
7 Log_Config.Set ("log4j.appender.console.level", "ERROR");
8 Log_Config.Set ("log4j.appender.console.layout", "level-message");
9 Log_Config.Set ("log4j.logger.Util", "FATAL");
10 Log_Config.Set ("log4j.logger.ADO", "ERROR");

Stephane Carrez 37

Ada Database Objects Programmer’s Guide 2021-07-25

11 Log_Config.Set ("log4j.logger.ADO.Statements", "DEBUG");
12 Util.Log.Loggers.Initialize (Log_Config);

The ADO runtime has several loggers, each of them can be activated separately. The following loggers
are interesting:

Logger name Description

ADO.Drivers Database drivers and connection to servers

ADO.Sessions Database session management

ADO.Statements SQL statements execution

ADO.Queries Named queries identification and retreival

7.2 Handling exceptions

Some exceptions are raised when there is a serious problem. The problem could be of di�erent nature:

• there is a database connection issue,
• there is an SQL error,
• there is a data inconsistency.

The ADO.Sessions.Connection_Error exception is raised when the connection string used to
access the database is incorrect. The connection string could be improperly formatted, a database
driver may not be found, the database server may not be reachable.

The ADO.Sessions.Session_Error exception is raised when the Session object is used while it is
not initialized or the connection was closed programatically.

The ADO.Queries.Query_Error exception is raised when a named query cannot be found. In that
case, the SQL that corresponds to the query cannot be executed.

The ADO.Statements.SQL_Error exception is raised when the execution of an SQL query fails. This
is an indication that the SQL statement is invalid and was rejected by the database.

The ADO.Statements.Invalid_Column exception is raised a�er the execution of an SQL query
when the application tries to access the result. It is raised when the program tries to retrieve a column
value that does not exist.

The ADO.Statements.Invalid_Type exception is also raised a�er the execution of an SQL query
when the value of a column cannot be converted to the Ada type. It occurs if a column contains a string
while the application tries to get the column as an integer or date. Similarly, if a column is null and the
returned Ada type does not support the nullable concept, this exception will be raised.

Stephane Carrez 38

Ada Database Objects Programmer’s Guide 2021-07-25

The ADO.Statements.Invalid_Statement exception is raised when you try to use and execute a
Statement object which is not initialized.

The object layer provided by ADO raises specific exceptions.

The ADO.Objects.NOT_FOUND exception is raised by the generated Load procedure when an object
cannot be found in the database.

The ADO.Objects.INSERT_ERROR exception is raised by the generated Save procedure executed
the SQL INSERT statement and its execution failed.

The ADO.Objects.UPDATE_ERROR exception is raised by the generated Save procedure executed
the SQL UPDATE statement and its execution failed.

The ADO.Objects.LAZY_LOCK exception is raised by the generated Save procedure executed the
SQL UPDATE statement failed and the version of the object was changed.

Stephane Carrez 39

	Introduction
	Installation
	Before Building
	Database Driver Installation
	Ubuntu
	Windows

	Configuration
	Build
	Installation
	Using

	Tutorial
	Defining the data model
	Generating the Ada model and SQL schema
	Getting a Database Connection
	Opening a Session
	Creating a database record
	Loading a database record
	Getting a list of objects
	Running SQL queries

	Session
	Database Drivers
	MySQL Database Driver
	SQLite Database Driver
	PostgreSQL Database Driver

	Connection string
	Session Factory
	Database Caches

	Database Statements
	Query Parameters
	Parameter Expander

	Query Statements
	Named Queries
	XML Query File
	SQL Result Mapping
	SQL Queries
	Using Named Queries

	Model Mapping
	Table definition
	Column mapping
	Primary keys
	Relations
	Versions
	Loading Objects
	Modifying Objects
	Deleting Objects
	Sequence Generators
	HiLo Sequence Generator

	Troubleshooting
	Change the log configuration
	Handling exceptions

