Ada Keystore Guide

Stephane Carrez

2024-09-07

Ada Keystore Guide 2024-09-07

Contents
1 Introduction 3
2 Installation 5
2.1 BeforeBuilding e 5
211 Ubuntu . . . e e e e e e 5
2.1.2 FreeBSD 13 e e e e e 5
2.1.3 WIindows e e e e e e 5
2.2 Gettingthesources e 5
2.3 Build. . . e e e e e e e e
2.4 Installation L e e e
2.5 UsSINg . . o o e e e e
3 Using Ada Keystore Tool 7
3.1 Storingandusingone-timepassword e 8
4 Programmer’s Guide 9
4.1 Keystore e e e e e e e e e e e e e 9
4.1.1 Creation o e e e e e e e 9
4.1.2 SEOMNG . . . o e e e e e e e e e e e e e e 9
5 AKT Tool 11
5.1 NAME e e 11
5.2 SYNOPSIS e e e e e e 11
5.3 DESCRIPTION o e e e e e e e e e e e e 11
5.4 OPTIONS . . . e e e e e e e e e e 12
55 COMMANDS e 13
5.5.1 Thecreatecommand e 13
5.5.2 Theextractcommand 14
5,53 Thegenkeycommand 14
5,54 Themountcommand e 14
5,55 Thesetcommand e 15
5.5.6 Thestorecommand e 15
5,57 Theremovecommand v i i e e e e e e 15
5,58 Theeditcommand 15
5.5.9 Thelistcommand e 16
5,510 Thegetcommand 16
5.5.11 Theotpcommand e e 16

Stephane Carrez 1

Ada Keystore Guide 2024-09-07

5.5.12 Thepassword-addcommand, 16
5.5.13 The password-removecommand 17
5.5.14 Thepassword-setcommand, 17

5.6 SECURITY o e e e e e e e e e e e e e e 17
5.7 CONFIGURATION e e e e e e e e e e 18
57.1 gpg-encrypt e e e e 18

5.7.2 gpg-decrypt 18

57.3 gpg-listkeys 18
574 KeYS . o v e e e e e e e e e 19

575 filllzero e e e 19

5.8 SEEALSO e e e e 19
5.9 AUTHOR o e e e e e e e 19
6 Implementation 20
6.1 Filelayouts e e e e 20
6.1.1 Headerblock 20

6.1.2 GPGHeaderdata 21

6.1.3 Masterkeys e e e 22

6.1.4 DirectoryEntries e e e e 23

6.1.5 DataBlock 24

6.2 KeystoreProtections e 24
6.2.1 PasswordProtection 25

6.2.2 GPGProtection e e e e 26

6.2.3 Directory Protection 27

Stephane Carrez 2

Ada Keystore Guide 2024-09-07

1 Introduction

Ada Keystore is a library and tool to store information in secure wallets and protect the stored infor-
mation by encrypting the content. It is necessary to know one of the wallet password to access its
content. Ada Keystore can be used to safely store passwords, credentials, bank accounts and even
documents.

Wallets are protected by a master key using AES-256 and the wallet master key is protected by a user
password. The wallet defines up to 7 slots that identify a password key that is able to unlock the master
key. To open a wallet, it is necessary to unlock one of these 7 slots by providing the correct password.
Wallet key slots are protected by the user’s password and the PBKDF2-HMAC-256 algorithm, a random
salt, a random counter and they are encrypted using AES-256.

Values stored in the wallet are protected by their own encryption keys using AES-256. A wallet can
contain another wallet which is then protected by its own encryption keys and passwords (with 7
independent slots). Because the child wallet has its own master key, it is necessary to known the
primary password and the child password to unlock the parent wallet first and then the child wallet.

Encrypted Data

GPG protected key User password /_._

Figure 1: AKT Overview

The data is organized in 4K blocks whose primary content is encrypted either by the wallet master key or
by the entry keys. The data block is signed by using HMAC-256. A data block can contain several values
but each of them is protected by its own encryption key. Each value is also signed using HMAC-256.

The keystore uses several encryption keys at different levels to protect the content. A document stored

Stephane Carrez 3

Ada Keystore Guide 2024-09-07

in the keystore is split in data fragment and each data fragment is encrypted by using its own key.
The data fragments are stored in specific data blocks so that they are physically separated from the
encryption keys.

The data fragment encryption keys are stored in the directory blocks and they are encrypted by using
a specific key.

Master key block Directory keys Encrypted Data

“a Data fragment
Data fragment
i)

) ’frl i Data fragment
3

I”
1

Data keys

User password |
I

Figure 2: AKT Keys

This document describes how to build the tool and library and how you can use the different features
to protect your sensitive data.

Stephane Carrez 4

Ada Keystore Guide 2024-09-07

2 Installation

This chapter explains how to build and install the library.

2.1 Before Building

To build the Ada Keystore you will need the GNAT Ada compiler as well as the Alire package manager.

2.1.1 Ubuntu

Install the following packages:

sudo apt-get install -y make gnat gprbuild git gnupg2 alr

2.1.2 FreeBSD 13

Install the following packages:

pkg install gmake gprbuild gnatl2 git gnupg alire

2.1.3 Windows

Get the Alire package manager Alire site and install.
Install the following packages:
pacman -S git

pacman -S make
pacman -S base-devel —--needed

2.2 Getting the sources

You should checkout the project with the following commands:

git clone https://gitlab.com/stcarrez/ada—keystore.git
cd ada-keystore

Stephane Carrez 5

https://alire.ada.dev/
https://alire.ada.dev/

Ada Keystore Guide 2024-09-07

2.3 Build
You can build the library by running:
make

After building, it is good practice to run the unit tests before installing the library. The unit tests are
built and executed using:

make test

And unit tests are executed by running the bin/keystore_harness test program.

2.4 Installation
The installation is done by running the install target:
make install

If you want to install on a specific place, you can change the prefix and indicate the installation
direction as follows:

make install prefix=/opt

2.5 Using

To use the library in an Ada project, add the following line at the beginning of your GNAT project file:

with "keystoreada";

Stephane Carrez 6

Ada Keystore Guide 2024-09-07

3 Using Ada Keystore Tool

The akt tool is the command line tool that manages the wallet. It provides the following commands:

« create: create the keystore

+ edit: edit the value with an external editor

« get: get avalue from the keystore

« help: print some help

« List: list values of the keystore

« remove: remove values from the keystore

« Otp: generate a one time password or manage OATH secrets
« set:insert or update a value in the keystore

To create the secure file, use the following command and enter your secure password (it is recom-
mended to use a long and complex password):

akt create secure.akt

At this step, the secure file is created and it can only be opened by providing the password you entered.
To add something, use:

akt set secure.akt bank.password 012345

To store afile, use the following command:

akt store secure.akt contract.doc

If you want to retrieve a value, you can use one of:

akt get secure.akt bank.password
akt extract secure.akt contract.doc

You can also use the akt command together with the tar command to create secure backups. You
can create the compressed tar file, pipe the result to the akt command to store the content in the
wallet.

tar czf - dir-to-backup | akt store secure.akt -- backup.tar.gz

To extract the backup you can use the extract command and feed the result to the tar command
as follows:

akt extract secure.akt -- backup.tar.gz | tar xzf -

Stephane Carrez 7

Ada Keystore Guide 2024-09-07

3.1 Storing and using one-time password

The akt tool integrates a support to manage Open Authentication (OATH) standards for generating
one-time password (OTP) codes. The OTP code is similar to a password and often asked after a password
validation in two-factor (2FA) authentications. akt supports the time-based one-time password (TOTP)
algorithm as described in RFC 6238. This support is provided by the otp command.

After creating your secure keystore and protecting it either with a password or your GPG key, you can
register the otpauth URI generated by your provider (for example GitHub or GitLab). The simpler
registration form is to get the otpauth URI from the provider and register it with the command:

akt otp secure.akt 'otpauth://totp/GitHub:user?secret=XXXXXXX&issuer=
GitHub'

You can also use the ——interactive option to help you enter the different fields that compose the
otpauth URI Once the otpauth URIlis registered, you can ask a new code by using the same otp
command and giving the account name:

akt otp secure.akt GitHub:user

Stephane Carrez 8

Ada Keystore Guide 2024-09-07

4 Programmer’s Guide

4.1 Keystore

The Keystore package provides operations to store information in secure wallets and protect the
stored information by encrypting the content. It is necessary to know one of the wallet password to
access its content. Wallets are protected by a master key using AES-256 and the wallet master key is
protected by a user password. The wallet defines up to 7 slots that identify a password key that is able
to unlock the master key. To open a wallet, it is necessary to unlock one of the 7 slots by providing the
correct password. Wallet key slots are protected by the user’s password and the PBKDF2-HMAC-256
algorithm, a random salt, a random counter and they are encrypted using AES-256.

4.1.1 Creation
To create a keystore you will first declare aWallet_F1ile instance. You will also need a password
that will be used to protect the wallet master key.
with Keystore.Files;
WS : Keystore.Files.Wallet_File;

Pass : Keystore.Secret_Key := Keystore.Create ("There was no choice
but to be pioneers");

You can then create the keystore file by using the Create operation:

WS.Create ("secure.akt'", Pass);

4.1.2 Storing
Values stored in the wallet are protected by their own encryption keys using AES-256. The encryption
key is generated when the value is added to the wallet by using the Add operation.

WS.Add ("Grace Hopper", "If it's a good idea, go ahead and do it.");

The Get function allows to retrieve the value. The value is decrypted only when the Get operation is
called.

Citation : constant String := WS.Get ("Grace Hopper");

The Delete procedure can be used to remove the value. When the value is removed, the encryption
key and the data are erased.

Stephane Carrez 9

Ada Keystore Guide 2024-09-07

WS.Delete ("Grace Hopper");

Stephane Carrez 10

Ada Keystore Guide 2024-09-07

5 AKT Tool

5.1 NAME

akt - Tool to protect your sensitive data with secure storage

5.2 SYNOPSIS

akt [-v] [-w] [-w] [-V] [-c config-file] [-t count] [-z] command [-k file] [-d dir] [-p password] [-password
password] [-passfile file] [-passenv name] [-passfd fd] [-passask] [-passcmd cmd] [-passkey name]
[-wallet-key-file file] [-wallet-key name]

5.3 DESCRIPTION

akt is a tool to store information in secure wallets and protect the stored information by encrypting
the content. It is necessary to know one of the wallet password to access its content. akt can be used
to safely store passwords, credentials, bank accounts and even documents.

Wallets are protected by a master key using AES-256 and the wallet master key is protected by a user
password. The wallet defines up to 7 slots that identify a password key that is able to unlock the master
key. To open a wallet, it is necessary to unlock one of these 7 slots by providing the correct password.
Wallet key slots are protected by the user’s password and the PBKDF2-HMAC-256 algorithm, a random
salt, a random counter and they are encrypted using AES-256.

Values stored in the wallet are protected by their own encryption keys using AES-256. A wallet can
contain another wallet which is then protected by its own encryption keys and passwords (with 7
independent slots). Because the child wallet has its own master key, it is necessary to known the
primary password and the child password to unlock the parent wallet first and then the child wallet.

The data is organized in blocks of 4K whose primary content is encrypted either by the wallet master
key or by the entry keys. The data block is signed by using HMAC-256. A data block can contain several
values but each of them is protected by its own encryption key. Each value is also signed using HMAC-
256. Large values can be written to several data blocks and in that case each fragment is encrypted by
using its own encryption key.

The tool provides several commands that allow to create a keystore, insert values, retrieve values or
delete them. You can use it to store your passwords, your secret keys and even your documents.

Passwords are retrieved using one of the following options:

+ by reading afile that contains the password,

Stephane Carrez 11

Ada Keystore Guide 2024-09-07

by looking at an environment variable,

by using a command line argument,

by getting the password through the ssh-askpass(1) external command,

+ by running an external command,

by asking interactively the user for the password,

by asking through a network socket for the password.

5.4 OPTIONS

The following options are recognized by akt:

-V Prints the akt version.

-v Enable the verbose mode.

-vv Enable debugging output.

-c config-file Defines the path of the global akt configuration file.

-t count Defines the number of threads for the encryption and decryption process. By default, it uses
the number of system CPU cores.

-k file
Specifies the path of the keystore file to open.
-d directory

Specifies the directory path of the keystore data files. When this option is used, the data blocks are
written in separate files. The data blocks do not contain the encryption keys and each of them is
encrypted with its own secure key.

-p password

The keystore password is passed within the command line. Using this method is convenient but is not
safe.

—passenv envname

The keystore password is passed within an environment variable with the given name. Using this
method is considered safer but still provides some security leaks.

-passfile path

The keystore password is passed within a file that is read. The file must not be readable or writable by
other users or group: its mode must be r2?——. The directory that contains the file must also satisfy the

Stephane Carrez 12

Ada Keystore Guide 2024-09-07

not readable by other users or group members, This method is safer and provides the same security
level as the —-passkey option.

-passfd fd

The keystore password is passed within a pipe whose file descriptor number is given. The file descriptor
is read to obtain the password. This method is safer.

-passask

The keystore password is retrieved by the running the external tool ssh-askpass(1) which will ask the
password through either KDE, Ghome or another desktop interactive application. The password is
retrieved through a pipe that akt sets while launching the command.

—passcmd cmd

The keystore password is retrieved by the running the external command defined in emd. The command
should print the password on its standard output without end of line. The password is retrieved through
a pipe that akt sets while launching the command.

—passkey name

The keystore password is retrieved from a keyfile with the given basename. The keyfile is created by
the genkey command and they are stored on the file system in a specific directory. Unlike the -passfile
option, only the basename of the file is given to the option and this avoid to give a full path namein
some cases. This provides the same security level as the -passfile option.

-wallet-key-file file Defines the path of a file which contains the wallet master key file.
-wallet-key name Defines the name of the key file which contains the wallet master key.

-z Erase and fill with zeros instead of random values.

5.5 COMMANDS
5.5.1 The create command

akt create keystore.akt [--force] [--counter-range min:max] [--split
count] [--gpg user ...]

Create a new keystore and protect it with the password. When the keystore file already exist, the create
operation will fail unless the -force option is passed.

The password to protect the wallet is passed using one of the following options: -passfile, -passkey,
-passenv, -password, -passsocket or -gpg. When none of these options are passed, the password is
asked interactively.

Stephane Carrez 13

Ada Keystore Guide 2024-09-07

The -counter-range option allows to control the range for the random counter used by PBKDF2 to
generate the encryption key derived from the specified password. High values provide a strongest
derived key at the expense of speed. This option is ignored when the -gpg option is used.

The -split option indicates to use several separate files for the data blocks and it controls the number
of separate files to use. When used, a directory with the name of the keystore file is created and will
contain the data files.

The -gpg option allows to protect the keystore by using a user’s GPG encryption key. The option
argument defines the GPG user’s name or GPG key. When the keystore password is protected by the
user’s GPG key, arandom password is generated to protect the keystore. The gpg2(1) command is used
to encrypt that password using the user’s public key and save it in the keystore header. The gpg2(1)
command is then used to decrypt that and be able to unlock the keystore provided that the user’s
private key is known. When using the -gpg option, it is possible to protect the keystore for several
users, thus being able to share the secure file with each of them.

5.5.2 The extract command

akt extract keystore.akt -- name
akt extract keystore.akt {name...}

This command allows to extract files or directories recursively from the keystore. It is possible to extract
several files and directories at the same time.

When the - option is passed, the command accepts only one argument. It extracts the specified name
and writes the result on the standard output. It can be used as a target for a pipe command.

5.5.3 The genkey command

akt genkey [--remove] name

The genkey command is used to generate or remove a password key file stored in some safe location
on the file system (see the keys configuration variable). The password key file can then be used with the
-passkey option. It provides the same security level as using the —passfile option but helps in setting
up and using separate key files for different wallets.

5.5.4 The mount command

akt mount keystore.akt [-f] [--enable-cache] mount-point

Stephane Carrez 14

Ada Keystore Guide 2024-09-07

This command is available when the fuse(8) supportis enabled. It allows to mount the keystore content
on the mount-point directory and access the encrypted content through the filesystem. The akt tool
works as a daemon to serve fuse(8) requests that come from the kernel. The -f option allows to run
this daemon as a foreground process. By default, the kernel cache are disabled because the keystore
content is decrypted and given as clear content to the kernel. This could be a security issue for some
system and users. The kernel cache can be enabled by using the -enable-cache option.

To unmount the file system, one must use the mount(8) command.

umount mount-point

5.5.5 The set command

akt set keystore.akt name value

The set command is used to store a content passed as command line argument in the wallet. If the
wallet already contains the name, the value is updated.

5.5.6 The store command

akt store keystore.akt -- name
akt store keystore.akt {file...|directory...}

This command can store files or directories recursively in the keystore. It is possible to store several
files and directories at the same time.

When the - option is passed, the command accepts only one argument. It reads the standard input
and stores it under the specified name. It can be used as a target for a pipe command.

5.5.7 The remove command

akt remove keystore.akt name .

The remove command is used to erase a content from the wallet. The data block that contained the
content to protect is erased and replaced by zeros. The secure key that protected the wallet entry is
also cleared. It is possible to remove several contents.

5.5.8 The edit command

Stephane Carrez 15

Ada Keystore Guide 2024-09-07

akt edit keystore.akt [-e editor] name

The edit command can be used to edit the protected wallet entry by calling the user’s prefered editor
with the content. The content is saved in a temporary directory and in a temporary file. The editor is
launched with the path and when editing is finished the temporary file is read. The temporary directory
and files are erased when the editor terminates successfully or not. The editor can be specified by using
the -e option, by setting up the EDITOR environment variable or by updating the editor(1) alternative
with update-alternative(1).

5.5.9 The list command

akt list keystore.akt

The list command describes the entries stored in the keystore with their name, size, type, creation date
and number of keys which protect the entry.

5.5.10 The get command

akt get keystore.akt [-n] name...

The get command allows to retrieve the value associated with a wallet entry. It retrieves the value for
each name passed to the command. The value is printed on the standard output. By default a newline
is emitted after each value. The -n option prevents the output of the trailing newline.

5.5.11 The otp command

akt otp keystore.akt name

akt otp keystore.akt otpauth:

The otp command manages OATH secrets and provides TOTP code generation for a two factor authen-
tication. When an otpauth://totp/ string is given, the account is extracted and it is inserted in the wallet.
When an account name or issuer name is given, the command uses the secret to generate the 6 digit
codes for the authentication. When no parameter are given the command gives a list of known otpauth
URI.

5.5.12 The password-add command

Stephane Carrez 16

Ada Keystore Guide 2024-09-07

akt password-add keystore.akt [--new-passfile file] [--new-password
password] [--new-passenv name]

The password-add command allows to add a new password in one of the wallet key slot. Up to seven
passwords can be defined to protect the wallet. The overall security of the wallet is that of the weakest
password. To add a new password, one must know an existing password.

5.5.13 The password-remove command

akt password-remove keystore.akt [--force]

The password-remove command can be used to erase a password from the wallet master key slots.
Removing the last password makes the keystore unusable and it is necessary to pass the -force option
for that.

5.5.14 The password-set command

akt password-set [--new-passfile file] [-—-new-password password] [--new
-passenv name]

The password-set command allows to change the current wallet password.

5.6 SECURITY

Wallet master keys are protected by a derived key that is created from the user’s password using
PBKDF2 and HMAC-256 as hashing operation. When the wallet is first created, a random salt and counter
are allocated which are then used by the PBKDF2 generation. The wallet can be protected by up to 7
different passwords. Despite this, the security of the wallet master key still depends on the strength of
the user’s password. For this matter, it is still critical for the security to use long passphrases.

The passphrase can be passed within an environment variable or within a command line argument.
These two methods are considered unsafe because it could be possible for other processes to see
these values. It is best to use another method such as using the interactive form, passing the password
through a file or passing using a socket based communication.

When the wallet master key is protected using gpg2(1) a 32-bytes random binary key and a 16-bytes
random binary IV is created to protect the wallet master key. Another set of 80 bytes of random binary
data is used to encrypt and sign the whole wallet master key block. The 128 bytes that form these
random binary keys are encrypted using the user’s GPG public key and the result saved in the keystore

Stephane Carrez 17

Ada Keystore Guide 2024-09-07

header block. The -gpg option is specified only for the creation of the keystore and allows to encrypt a
master key slot for several GPG keys. To unlock the keystore file, the gpg2(1) command will be used to
decrypt the keystore header content automatically. When the user’s GPG private key is not found, it is
not possible to unlock the keystore with this method.

When several GPG keys are used to protect the wallet, they share the same 80 bytes to decrypt the
wallet master key block but they have their own key and IV to unlock the key slot.

Depending on the size, a data stored in the wallet is split in one or several data entry. Each wallet data
entry is then protected by their own secret key and IV vector. Wallet data entry are encrypted using
AES-256-CBC. The wallet data entry key and IV vectors are protected by the wallet master key.

When the -split option is used, the data storage files only contain the data blocks. They do not contain
any encryption key. The data storage files use the .dkt file extension.

5.7 CONFIGURATION

The akt global configuration file contains several configuration properties which are used to customize
several commands. These properties can be modified with the config command.

5.7.1 gpg-encrypt

This property defines the gpg2(1) command to be used to encrypt a content. The content to encrypt is
passed in the standard input and the encrypted content is read from the standard output. The GPG key
parameter can be retrieved by using the SUSER pattern.

5.7.2 gpg-decrypt

This property defines the gpg2(1) command to be used to decrypt a content. The content to decrypt is
passed in the standard input and the decrypted content is read from the standard output.

5.7.3 gpg-list-keys

This property defines the gpg2(1) command to be used to retrieve the list of available secret keys. This
command is executed when the keystore file is protected by a GPG key to identify the possible GPG Key
ids that are capable of decrypting it.

Stephane Carrez 18

Ada Keystore Guide 2024-09-07

5.7.4 keys

This property defines the directory path where the key files generated by the genkey and specified with
the -passkey option are stored. The default location is the SHOME/.config/akt/keys directory.

5.7.5 fill-zero

This property controls whether akt must fill unused data areas with zeros or with random bytes.

5.8 SEEALSO

editor(1), update-alternative(1), ssh-askpass(1), gpg2(1), mount(8), fuse(8)

5.9 AUTHOR

Written by Stephane Carrez.

Stephane Carrez 19

Ada Keystore Guide 2024-09-07

6 Implementation

This chapter explains how the wallets are organised and protected.

6.1 File layouts

The data is organized in 4K blocks. The first block is a header block used to store various information to
identify the storage files. Other blocks have a clear 16-byte header and an HMAC-256 signature at the
end. Blocks are encrypted either by using the master key, the directory key, the data key or a per-data

fragment key.
Header block 4K
Ada Stora
(1815-12-10) UUID IDg HDR Data Storage Info + HMAC HMAC-256
(1852-11-27)

Master key block

HDR | Wallet info UUID Key slot 1 ‘ Key slot 7 HMAC-256

Directory block

HDR HMAC-256

Data block

LI Data fragment info HMAC-256 PEVENJ T (<)) 88 HMAC-256

Figure 3: Keystore blocks overview

The master key block and directory block are the two blocks that contain encryption keys.

6.1.1 Header block

The first block of the file is the keystore header block which contains clear information signed by an
HMAC header. The header block contains the keystore UUID as well as a short description of each

storage data file. It also contains some optional header data.

Stephane Carrez

20

Ada Keystore Guide 2024-09-07

4b Ada
4b = 10/12/1815

(o}
[
O
o
vy}
=
>
(@]

4b = 27/11/1852

00 01 2b = Version 1

00 01 2b = File header length in blocks
e +
| Keystore UUID 16b
| Storage ID 4b
| Block size 4b
| Storage count 4b
| Header Data count| 2b

+
|
|
|
|
|
|
[
|
|
[
|
|
|
|
[
|
|
|

—_—— ——

| Header Data size | 2b

| Header Data type 2b = ® (NONE), 1 (GPGl) 2, (GPG2)
+ __________________

| Header Data | Nb

Fom e o

| I

o +———

| © |

o — o

| I

o -

| Storage ID | 4b

| Storage type | 2b

| Storage status | 2b 00 = open, Ada = sealed
| Storage max bloc | 4b

| Storage HMAC | 32b = 44b
o +———

| Header HMAC-256 | 32b

e +-——

6.1.2 GPG Header data

The GPG encrypted data contains the following information:

o t———
| TAG | 4b

e -
| Lock Key | 32b
| Lock IV | 1eb
| wallet Key | 32b
| wallet IV | 1eb
| wallet Sign | 32b
Fom to———

Stephane Carrez 21

Ada Keystore Guide 2024-09-07
6.1.3 Master keys
Wallet header encrypted with the parent wallet id
Fom +
| 01 o1 | 2b
| Encrypt size | 2b
| Parent wWallet id | 4b
| PAD @ | 4b
| PAD @ | 4b
e +
| wallet magic | 4b
| Wwallet version | 4b
| wallet 1did | 4b
| Wallet block ID | 4b
e +
| wallet gid | 16b
o +
| Wwallet key count | 4b
| PAD @ | 4b
Fom +
| Key type | 4b
| Key size | 4b
| Counter for key | 4b
| Counter for iv | 4b
| Salt for key | 32b
| Salt for iv | 32b
| Key slot sign | 32b
| Dir key # 1 | 32b ---
| Dir iv # 1 | 16b »
| Dir sign # 1 | 32b |
| Data key # 1 | 32b |
| Data iv # 1 | 16b | Encrypted by user's password
| Data sign #1 | 32b |
| Key key # 1 | 32b |
| Key iv # 1 | 16b v
| Key sign #1 | 32b ——-
| Slot HMAC-256 | 32b
| PAD @ / Random | 86b
Fom +
| Key slot #2 | 512b
Fom e +
| Key slot #3 | 512b
fom e +
| Key slot #4 | 512b
Fom e +
| Key slot #5 | 512b
o +
| Key slot #6 | 512b
fom +
| Key slot #7 | 512b
Stephane Carrez 22

Ada Keystore Guide

2024-09-07

6.1.4 Directory Entries

The wallet repository block is encrypted with the wallet directory key.

02 02
Encrypt size
Wallet -id
PAD ©

PAD ©

Next block ID
same storage
Data key offset

Entry ID
Entry type
Name size
Name

Create date
Update date
Entry size

Entry ID
Entry type
Name size
Name

Create date
Update date
Wallet 1lid

Wallet master ID

Storage ID

Data block ID

Data size

2b
2b
4b
4b
4b

4b

2b

4b
2b
2b
Nb
8b
8b
8b

4b
2b
2b
Nb
8b
8b
4b
4b

4b
4b
2b

BT_DATA_LENGTH

Block number for next repository block with

Starts at I0.Block_Index'lLast, decreasing

(E

(

<_

= T_STRING, T_BINARY

R e &

= T_WALLET

< —————— >

nd of name entry list

random or zero)
= Data key offset

DATA_NAME_ENTRY_SIZE + Name'lLength

DATA_NAME_ENTRY_SIZE + Name'lLength

DATA_KEY_SEPARATOR)

N Repeats "Data key count" times

|
| DATA_KEY_ENTRY_SIZE

58b

Stephane Carrez

23

Ada Keystore Guide

2024-09-07

| Content IV
| Content key

| Entry ID
| Data key count
| Data offset

| Block HMAC-256
+ __________________

6.1.5 DataBlock

| 16b
| 32b

| 4b
| 2b
| 4b

| 32b

\%

A

| DATA_KEY_HEADER_SIZE = 10b
\Y

Data block start is encrypted with wallet data key, data fragments are encrypted with their own key.

Loading and saving data blocks occurs exclusively from the workers package. The data block can be

stored in a separate file so that the wallet repository and its keys are separate from the data blocks.

| 03 03
| Encrypt size

| wallet -id

| PAD ©

| PAD ©
o
| Entry ID

| Slot size

| 00

| Data offset

| Content HMAC-256

6.2 Keystore Protections

2b
2b =
4b
4b

DATA_ENTRY_SIZE * Nb data fragment

Encrypted with wallet -d

=> 48b = DATA_ENTRY_SIZE

Encrypted with data entry key

The master key block contains the primary keys that are used to encrypt other blocks. The master key

block contains 7 key slots that are capable to unlock the master keys. Each slot is independent and can

be associated with a specific authentication method. Two authentication methods are supported:

 password based authentication,

Stephane Carrez

24

Ada Keystore Guide 2024-09-07

+ GPG based authentication.

6.2.1 Password Protection

In this mode, three secret information must be provided:

+ the wallet header key and IV,
« the wallet signature key,
« the user password.

First, the wallet master key block is decrypted with AES-256-CBC by using the wallet header key and
IV. The HMAC-256 signature is then computed with the wallet signature key on the decrypted content
and the clear 16-byte header at beginning of the block. The HMAC signature must match the signature
found at end of the block.

Once the wallet master key block is decrypted, the user password is checked against the available
key slots. For a given password protected key slot, a derived key is generated by using the PBKDF2-
HMAC256 algorithm. First, a 16-byte IV is generated and then a 32-byte key is generated. For each
PBKDF2 execution a specific 32-byte salt and counter is used. The key slot is then decrypted by using
the derived keys with AES-256-CBC. An HMAC-256 signature is built to verify the decrypted content.
When the HMAC signature matches the signature found in the key slot, the provided user’s password is

valid.

Stephane Carrez 25

Ada Keystore Guide 2024-09-07

Wallet master key block

HDR Wallet info UUID Key slot 1 Key slot 7 HMAC-256

Wallet Sign

Wallet Header Key, wallet header IV, Block ID NO, invalid

block

Wallet master key slot N (512 bytes) YES, valid block

saltkey N| salt IV N ctr slot N key slot N Sign N | HMAC
(32 bytes) (32 bytes) |(4 bytes) (4 bytes) (240 bytes) (32 bytes) |(32 bytes)

=>— NO, invalid
password

YES, valid password

User password

Wallet Master Keys

key sign | key IV | key key|dat sign| dat IV |dat key | dir IV | dir key |dir sign

(256 bits) (128 bits) {256 bits} (256 bits) 1128 bits) {256 bits} (128 bits) {236 bits) {256 bits)

Figure 4: Password based protection

6.2.2 GPG Protection

With the GPG protection, the header block contains additional information that is decrypted with the
user’s GPG private key. When such additional data is successfully decrypted, it contains several parts:

+ the wallet header key and IV,
+ the wallet signature key,
+ the key slot encryption key and IV.

The wallet master key block is decrypted and validated using the same process as the password
protection.

The key slot that matches the GPG key is identified by a header tag that is found in the key slot and in
the GPG header data. The key slot is decrypted by using the key slot encryption key and IV that was
decrypted by GPG. It is validated using HMAC-256.

Stephane Carrez 26

Ada Keystore Guide 2024-09-07

Header block

Ada
(1815-12-10) UUID
(1852-11-27)

GPG Private key
Wallet master key block

HDR Wallet info UUID

s“'lg’“' HDR Data Storage Info + HMAC ~ HMAC-256

Key slot 1 Key slot 7 HMAC-256

Key
(32 bytes)

v
(16 bytes)

% Key | Sign
(16 bytes) (32 bytes) | (32 bytes) |

NO, invalid
block

Wallet master key slot N (512 bytes)

header tag YES, valid block

(4 bytes)

key slot N Sign N| HMAC
(240 bytes) | (32 bytes) |(32 bytes)

Key, IV 6
é NO, invalid
password

YES, valid password

Wallet Master Keys

]
key sign | key IV | key key|dat sign| dat IV | dat key
5

256 bits} (128 bits) 1256 hits} 156 Bits) (128 bz (256 bits]

dir IV | dir key

{123 bits] (256 bits)

dirsignl

1256 bits}

Figure 5: GPG based protection

6.2.3 Directory Protection

A directory block contains the name of contents found in the keystore as well as the keys used to
encrypt data fragments. The directory block is decrypted with AES-256-CBC by using the directory key
and IV. The directory block number is xored on the directory IV to obtain the IV used for the decryption.
An HMAC-256 signature is computed with the clear 16-byte header and the decrypted directory content.
Itis then verified against the block HMAC.

Once decrypted, the directory block contains two areas. At beginning of the block, it contains the entry
names that are stored in the keystore. For each entry, a unique entry ID is assigned and is used as a
unique reference.

At end of the block, it contains the encryption keys and the block numbers where the data fragments
are stored. Each data fragment has its own encryption key and IV.

Stephane Carrez 27

Ada Keystore Guide 2024-09-07

Directory block

HMAC-256

Directory Sign

Directory Key, directory IV, Block ID NO, invalid

block

YES, valid block

Per data fragment encryption keys

'

Name Entry ID Entry ID | Store ID | Block Num v key
(N bytes) (4 bytes) (4 bytes) | (4 bytes) (4 bytes) | (128 bits) | (256 bits)

n Data fragment info HMAC—ZEE- DETEN S ET UL HMAC-256 ﬂ Data fragment info HMACJSS- Data Fragment m

Figure 6: Directory protection

Stephane Carrez 28

	Introduction
	Installation
	Before Building
	Ubuntu
	FreeBSD 13
	Windows

	Getting the sources
	Build
	Installation
	Using

	Using Ada Keystore Tool
	Storing and using one-time password

	Programmer’s Guide
	Keystore
	Creation
	Storing

	AKT Tool
	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	COMMANDS
	The create command
	The extract command
	The genkey command
	The mount command
	The set command
	The store command
	The remove command
	The edit command
	The list command
	The get command
	The otp command
	The password-add command
	The password-remove command
	The password-set command

	SECURITY
	CONFIGURATION
	gpg-encrypt
	gpg-decrypt
	gpg-list-keys
	keys
	fill-zero

	SEE ALSO
	AUTHOR

	Implementation
	File layouts
	Header block
	GPG Header data
	Master keys
	Directory Entries
	Data Block

	Keystore Protections
	Password Protection
	GPG Protection
	Directory Protection

