
Ada Utility Library Programmer’s
Guide

STEPHANE CARREZ

2021-07-25

Ada Utility Library Programmer’s Guide 2021-07-25

Contents

1 Introduction 4

2 Installation 5
2.1 Before Building . 5
2.2 Configuration . 5
2.3 Build . 6
2.4 Installation . 6
2.5 Using . 7

3 Logging 8
3.1 Using the log framework . 8
3.2 Logger Declaration . 8
3.3 Logger Messages . 9
3.4 Log Configuration . 9

4 Property Files 12
4.1 File formats . 12
4.2 Using property files . 12
4.3 Reading JSON property files . 13
4.4 Property bundles . 14
4.5 Advance usage of properties . 15

5 Date Utilities 16
5.1 Date Operations . 16
5.2 RFC7231 Dates . 16

6 Ada Beans 21
6.1 Objects . 21
6.2 Datasets . 22

7 Command Line Utilities 23
7.1 Command arguments . 23
7.2 Command line driver . 23
7.3 Example . 24

8 Serialization of data structures in CSV/JSON/XML 26
8.1 Introduction . 26
8.2 Record Mapping . 26

Stephane Carrez 2

Ada Utility Library Programmer’s Guide 2021-07-25

8.3 Mapping Definition . 28
8.4 De-serialization . 28
8.5 Parser Specificities . 29

8.5.1 XML . 29
8.5.2 CSV . 29

9 HTTP 30
9.1 Client . 30

9.1.1 GET request . 30

10 Streams 31
10.1 Bu�ered Streams . 31

10.1.1 Encoder and Decoders . 36
10.2 Timer Management . 37

10.2.1 Timer Creation . 37
10.2.2 Timer Main Loop . 37

11 Performance Measurements 39
11.1 Create the measure set . 39
11.2 Measure the implementation . 39
11.3 Reporting results . 40
11.4 Measure Overhead . 40
11.5 What must be measured . 40

Stephane Carrez 3

Ada Utility Library Programmer’s Guide 2021-07-25

1 Introduction

The Ada Utility Library provides a collection of utility packages which includes:

• A logging framework close to Java log4j framework,
• A support for properties,
• A serialization/deserialization framework for XML, JSON, CSV,
• Ada beans framework,
• Encoding/decoding framework (Base16, Base64, SHA, HMAC-SHA, AES256, PBKDF2, ECC),
• A composing stream framework (raw, files, bu�ers, pipes, sockets, compress),
• Several concurrency tools (reference counters, counters, pools, fifos, arrays, sequences, execu-
tors),

• Process creation and pipes,
• Support for loading shared libraries (on Windows or Unix),
• HTTP client library on top of CURL or AWS.

This document describes how to build the library and how you can use the di�erent features to simplify
and help you in your Ada application.

Stephane Carrez 4

Ada Utility Library Programmer’s Guide 2021-07-25

2 Installation

This chapter explains how to build and install the library.

2.1 Before Building

Before building the library, you will need:

• XML/Ada
• AWS

First get, build and install the XML/Ada and then get, build and install the Ada Utility Library.

2.2 Configuration

The library uses the configure script to detect the build environment, check whether XML/Ada, AWS,
Curl support are available and configure everything before building. If some component is missing,
the configure script will report an error or it will disable the feature. The configure script provides
several standard options and youmay use:

• --prefix=DIR to control the installation directory,
• --enable-shared to enable the build of shared libraries,
• --disable-static to disable the build of static libraries,
• --enable-distrib to build for a distribution and strip symbols,
• --disable-distrib to build with debugging support,
• --enable-coverage to build with code coverage support (-fprofile-arcs -ftest-
coverage),

• --disable-traceback to disable the support for symbolic traceback by the logging frame-
work,

• --disable-ahven to disable building the Ahven support used by the Ada utility testing frame-
work,

• --enable-aunit to enablebuilding theAUnit support usedby theAdautility testing framework,
• --disable-curl to disable the support for CURL,
• --disable-aws to disable the support for AWS,
• --disable-lzma to disable the support for LZMA,
• --with-xmlada=PATH to control the installation path of XML/Ada,
• --with-aws=PATH to control the installation path of AWS,
• --with-ada-lzma=PATH to control the installation path of Ada LZMA,
• --enable-link-options-util=opts to add some linker options when building the Ada Util
shared library,

Stephane Carrez 5

http://libre.adacore.com/libre/tools/xmlada/
http://libre.adacore.com/libre/tools/aws/
http://libre.adacore.com/libre/tools/xmlada/
https://github.com/stcarrez/ada-util
http://libre.adacore.com/libre/tools/xmlada/
http://libre.adacore.com/libre/tools/aws/
https://github.com/stcarrez/ada-lzma

Ada Utility Library Programmer’s Guide 2021-07-25

• --enable-link-options-curl=opts to add some linker options when building the Ada Util
Curl shared library,

• --help to get a detailed list of supported options.

In most cases you will configure with the following command:

1 ./configure

Building to get a shared library can sometimes be a real challenge. With GNAT 2018, you can configure
as follows:

1 ./configure --enable-shared

But with some other versions of the Ada compiler, youmay need to add some linker options to make
sure that the generated shared library is useable. Basically, it happens that the -ldl is not passed
correctly when the shared library is created and when it is used you end up with missing symbols
such as dlopen, dlclose, dlsym and dlerror. When this happens, you can fix by re-configuring and
adding the missing option with the following command:

1 ./configure --enable-shared --enable-link-options-util=--no-as-needed,-
ldl,--as-needed

2.3 Build

A�er configuration is successful, you can build the library by running:

1 make

A�er building, it is good practice to run the unit tests before installing the library. The unit tests are
built and executed using:

1 make test

And unit tests are executed by running the bin/util_harness test program.

2.4 Installation

The installation is done by running the install target:

1 make install

Stephane Carrez 6

Ada Utility Library Programmer’s Guide 2021-07-25

If you want to install on a specific place, you can change the prefix and indicate the installation
direction as follows:

1 make install prefix=/opt

2.5 Using

To use the library in an Ada project, add the following line at the beginning of your GNAT project file:

1 with "utilada";

If you use only a subset of the library, youmay use the following GNAT projects:

GNAT project Description

utilada_core Provides: Util.Concurrent, Util.Strings, Util.Texts,

Util.Locales, Util.Refs, Util.Stacks, Util.Listeners

Util.Executors

utilada_base Provides: Util.Beans, Util.Commands, Util.Dates,

Util.Events, Util.Files, Util.Log, Util.Properties

utilada_sys Provides: Util.Encoders, Util.Measures,

Util.Processes, Util.Serialize, Util.Streams

utilada_lzma Provides: Util.Encoders.Lzma, Util.Streams.Bu�ered.Lzma

utilada_aws Provides HTTP client support using AWS

utilada_curl Provides HTTP client support using CURL

utilada_http Provides Util.Http

utilada Uses all utilada GNAT projects except the unit test library

utilada_unit Support to write unit tests on top of Ahven or AUnit

Stephane Carrez 7

Ada Utility Library Programmer’s Guide 2021-07-25

3 Logging

The Util.Log package and children provide a simple logging framework inspired from the Java Log4j
library. It is intended to provide a subset of logging features available in other languages, be flexible,
extensible, small and e�icient. Having log messages in large applications is very helpful to understand,
track and fix complex issues, some of them being related to configuration issues or interaction with
other systems. The overhead of calling a log operation is negligeable when the log is disabled as it is in
the order of 30ns and reasonable for a file appender has it is in the order of 5us. To use the packages
described here, use the following GNAT project:

1 with "utilada_base";

3.1 Using the log framework

A bit of terminology:

• A logger is the abstraction that provides operations to emit amessage. Themessage is composed
of a text, optional formatting parameters, a log level and a timestamp.

• A formatter is the abstraction that takes the information about the log to format the finalmessage.

• An appender is the abstraction that writes the message either to a console, a file or some other
final mechanism.

3.2 Logger Declaration

Similar to other logging framework such as Java Log4j and Log4cxx, it is necessary to have and instance
of a logger to write a log message. The logger instance holds the configuration for the log to enable,
disable and control the format and the appender that will receive the message. The logger instance is
associated with a name that is used for the configuration. A good practice is to declare a Log instance
in the package body or the package private part to make available the log instance to all the package
operations. The instance is created by using the Create function. The name used for the configuration
is free but using the full package name is helpful to control precisely the logs.

1 with Util.Log.Loggers;
2 package body X.Y is
3 Log : constant Util.Log.Loggers.Logger := Util.Log.Loggers.Create ("X

.Y");
4 end X.Y;

Stephane Carrez 8

https://logging.apache.org/log4j/2.x/
https://logging.apache.org/log4j/2.x/
https://logging.apache.org/log4cxx/latest_stable/index.html

Ada Utility Library Programmer’s Guide 2021-07-25

3.3 Logger Messages

A log message is associated with a log level which is used by the logger instance to decide to emit or
drop the log message. To keep the logging API simple and make it easily usable in the application,
several operations are provided to write a message with di�erent log level.

A log message is a string that contains optional formatting markers that followmore or less the Java
MessageFormat class. A parameter is represented by a number enclosed by {}. The first parameter
is represented by {0}, the second by {1} and so on. Parameters are replaced in the final message
only when the message is enabled by the log configuration. The use of parameters allows to avoid
formatting the log message when the log is not used.

The example below shows several calls to emit a log message with di�erent levels:

1 Log.Error ("Cannot open file {0}: {1}", Path, "File does not exist");
2 Log.Warn ("The file {0} is empty", Path);
3 Log.Info ("Opening file {0}", Path);
4 Log.Debug ("Reading line {0}", Line);

The logger also provides a special Error procedure that accepts an Ada exception occurence as
parameter. The exception name andmessage are printed together with the error message. It is also
possible to activate a complete traceback of the exception and report it in the error message. With this
mechanism, an exception can be handled and reported easily:

1 begin
2 ...
3 exception
4 when E : others =>
5 Log.Error ("Something bad occurred", E, Trace => True);
6 end;

3.4 Log Configuration

The log configuration uses property files close to the Apache Log4j and to the Apache Log4cxx configu-
ration files. The configuration file contains several parts to configure the logging framework:

• First, the appender configuration indicates the appender that exists and can receive a log mes-
sage.

• Second, a root configuration allows to control the default behavior of the logging framework.
The root configuration controls the default log level as well as the appenders that can be used.

• Last, a logger configuration is defined to control the logging level more precisely for each logger.

Stephane Carrez 9

https://logging.apache.org/log4cxx/latest_stable/index.html

Ada Utility Library Programmer’s Guide 2021-07-25

Here is a simple log configuration that creates a file appender where log messages are written. The file
appender is given the name result and is configured to write the messages in the file my-log-file
.log. The file appender will use the level-message format for the layout of messages. Last is the
configuration of the X.Y logger that will enable only messages starting from the WARN level.

1 log4j.rootCategory=DEBUG,result
2 log4j.appender.result=File
3 log4j.appender.result.File=my-log-file.log
4 log4j.appender.result.layout=level-message
5 log4j.logger.X.Y=WARN

By default when the layout is not set or has an invalid value, the full message is reported and the
generated log messages will look as follows:

1 [2018-02-07 20:39:51] ERROR - X.Y - Cannot open file test.txt: File
does not exist

2 [2018-02-07 20:39:51] WARN - X.Y - The file test.txt is empty
3 [2018-02-07 20:39:51] INFO - X.Y - Opening file test.txt
4 [2018-02-07 20:39:51] DEBUG - X.Y - Reading line

When the layout configuration is set to data-level-message, the message is printed with the date
andmessage level.

1 [2018-02-07 20:39:51] ERROR: Cannot open file test.txt: File does not
exist

2 [2018-02-07 20:39:51] WARN : The file test.txt is empty
3 [2018-02-07 20:39:51] INFO : X.Y - Opening file test.txt
4 [2018-02-07 20:39:51] DEBUG: X.Y - Reading line

When the layout configuration is set to level-message, only the message and its level are reported.

1 ERROR: Cannot open file test.txt: File does not exist
2 WARN : The file test.txt is empty
3 INFO : X.Y - Opening file test.txt
4 DEBUG: X.Y - Reading line

The last possible configuration for layout is messagewhich only prints the message.

1 Cannot open file test.txt: File does not exist
2 The file test.txt is empty
3 Opening file test.txt
4 Reading line

Stephane Carrez 10

Ada Utility Library Programmer’s Guide 2021-07-25

The Console appender recognises the following configurations:

Name Description

layout Defines the format of the message printed by the appender.

level Defines the minimum level above which messages are printed.

stderr When “true” or “1”, use the console standard error,

by default the appender uses the standard output

The File appender recognises the following configurations:

Name Description

layout Defines the format of the message printed by the appender.

level Defines the minimum level above which messages are printed.

File The path used by the appender to create the output file.

append When “true” or “1”, the file is opened in appendmode otherwise

it is truncated (the default is to truncate).

immediateFlush When “true” or “1”, the file is flushed a�er eachmessage log.

Immediate flush is useful in some situations to have the log file

updated immediately at the expense of slowing down the processing

of logs.

Stephane Carrez 11

Ada Utility Library Programmer’s Guide 2021-07-25

4 Property Files

TheUtil.Propertiespackage and children implements support to read, write and use property files
either in the Java property file format or the Windows INI configuration file. Each property is assigned
a key and a value. The list of properties are stored in the Util.Properties.Manager tagged record
and they are indexed by the key name. A property is therefore unique in the list. Properties can be
grouped together in sub-properties so that a key can represent another list of properties. To use the
packages described here, use the following GNAT project:

1 with "utilada_base";

4.1 File formats

The property file consists of a simple name and value pair separated by the = sign. Thanks to the
Windows INI file format, list of properties can be grouped together in sections by using the [section-
name] notation.

1 test.count=20
2 test.repeat=5
3 [FileTest]
4 test.count=5
5 test.repeat=2

4.2 Using property files

An instance of the Util.Properties.Manager tagged record must be declared and it provides
various operations that can be used. When created, the property manager is empty. One way to fill it is
by using the Load_Properties procedure to read the property file. Another way is by using the Set
procedure to insert or change a property by giving its name and its value.

In this example, the property file test.properties is loaded and assuming that it contains the
above configuration example, the Get ("test.count")will return the string "20". The property
test.repeat is thenmodified to have the value "23" and the properties are then saved in the file.

1 with Util.Properties;
2 ...
3 Props : Util.Properties.Manager;
4 ...
5 Props.Load_Properties (Path => "test.properties");
6 Ada.Text_IO.Put_Line ("Count: " & Props.Get ("test.count");

Stephane Carrez 12

Ada Utility Library Programmer’s Guide 2021-07-25

7 Props.Set ("test.repeat", "23");
8 Props.Save_Properties (Path => "test.properties");

To be able to access a section from the property manager, it is necessary to retrieve it by using the
Get function and giving the section name. For example, to retrieve the test.count property of the
FileTest section, the following code is used:

1 FileTest : Util.Properties.Manager := Props.Get ("FileTest");
2 ...
3 Ada.Text_IO.Put_Line ("[FileTest] Count: "
4 & FileTest.Get ("test.count");

When getting or removing a property, the NO_PROPERTY exception is raised if the property name was
not found in the map. To avoid that exception, it is possible to check whether the name is known by
using the Exists function.

1 if Props.Exists ("test.old_count") then
2 ... -- Property exist
3 end if;

4.3 Reading JSON property files

The Util.Properties.JSON package provides operations to read a JSON content and put the result
in a propertymanager. The JSONcontent is flattened into a set of name/value pairs. The JSON structure
is reflected in the name. Example:

1 { "id": "1", id -> 1
2 "info": { "name": "search", info.name -> search
3 "count", "12", info.count -> 12
4 "data": { "value": "empty" }}, info.data.value -> empty
5 "count": 1 info.count -> 1
6 }

To get the value of a JSON property, the user can use the flatten name. For example:

1 Value : constant String := Props.Get ("info.data.value");

The default separator to construct a flatten name is the dot (.) but this can be changed easily when
loading the JSON file by specifying the desired separator:

1 Util.Properties.JSON.Read_JSON (Props, "config.json", "|");

Stephane Carrez 13

Ada Utility Library Programmer’s Guide 2021-07-25

Then, the property will be fetch by using:

1 Value : constant String := Props.Get ("info|data|value");

4.4 Property bundles

Property bundles represent several property files that share some overriding rules and capabilities.
Their introduction comes from Java resource bundles which allow to localize easily some configuration
files or somemessage. When loading aproperty bundle a locale is defined to specify the target language
and locale. If a specific property file for that locale exists, it is used first. Otherwise, the property bundle
will use the default property file.

A rule exists on the name of the specific property locale file: itmust start with the bundle name followed
by _ and the name of the locale. The default property file must be the bundle name. For example, the
bundle dates is associated with the following property files:

1 dates.properties Default values (English locale)
2 dates_fr.properties French locale
3 dates_de.properties German locale
4 dates_es.properties Spain locale

Because a bundle can be associated with one or several property files, a specific loader is used. The
loader instance must be declared and configured to indicate one or several search directories that
contain property files.

1 with Util.Properties.Bundles;
2 ...
3 Loader : Util.Properties.Bundles.Loader;
4 Bundle : Util.Properties.Bundles.Manager;
5 ...
6 Util.Properties.Bundles.Initialize (Loader,
7 "bundles;/usr/share/bundles");
8 Util.Properties.Bundles.Load_Bundle (Loader, "dates", "fr", Bundle);
9 Ada.Text_IO.Put_Line (Bundle.Get ("util.month1.long");

In this example, the util.month1.long key is first searched in the dates_fr French locale and if it
is not found it is searched in the default locale.

The restrictionwhenusingbundles is that theydon’t allowchanginganyvalueand theNOT_WRITEABLE
exception is raised when one of the Set operation is used.

When a bundle cannot be loaded, the NO_BUNDLE exception is raised by the Load_Bundle operation.

Stephane Carrez 14

Ada Utility Library Programmer’s Guide 2021-07-25

4.5 Advance usage of properties

The property manager holds the name and value pairs by using an Ada Bean object.

It is possible to iterate over the properties by using the Iterate procedure that accepts as parameter
a Process procedure that gets the property name as well as the property value. The value itself is
passed as an Util.Beans.Objects.Object type.

Stephane Carrez 15

Ada Utility Library Programmer’s Guide 2021-07-25

5 Date Utilities

The Util.Dates package provides various date utilities to help in formatting and parsing dates in
various standard formats. It completes the standardAda.Calendar.Formattingandother packages
by implementing specific formatting andparsing. Touse thepackages describedhere, use the following
GNAT project:

1 with "utilada_base";

5.1 Date Operations

Several operations allow to compute from a given date:

• Get_Day_Start: The start of the day (0:00),

• Get_Day_End: The end of the day (23:59:59),

• Get_Week_Start: The start of the week,

• Get_Week_End: The end of the week,

• Get_Month_Start: The start of the month,

• Get_Month_End: The end of the month

The Date_Record type represents a date in a split format allowing to access easily the day, month,
hour and other information.

1 Now : Ada.Calendar.Time := Ada.Calendar.Clock;
2 Week_Start : Ada.Calendar.Time := Get_Week_Start (Now);
3 Week_End : Ada.Calendar.Time := Get_Week_End (Now);

5.2 RFC7231 Dates

The RFC 7231 defines a standard date format that is used byHTTP headers. TheUtil.Dates.RFC7231
package provides an Image function to convert a date into that target format and a Value function to
parse such format string and return the date.

1 Now : constant Ada.Calendar.Time := Ada.Calendar.Clock;
2 S : constant String := Util.Dates.RFC7231.Image (Now);
3 Date : Ada.Calendar.time := Util.Dates.RFC7231.Value (S);

A Constraint_Error exception is raised when the date string is not in the correct format. ## ISO8601
Dates The ISO8601defines a standarddate format that is commonlyusedandeasily parsedbyprograms.

Stephane Carrez 16

https://tools.ietf.org/html/rfc7231

Ada Utility Library Programmer’s Guide 2021-07-25

The Util.Dates.ISO8601 package provides an Image function to convert a date into that target
format and a Value function to parse such format string and return the date.

1 Now : constant Ada.Calendar.Time := Ada.Calendar.Clock;
2 S : constant String := Util.Dates.ISO8601.Image (Now);
3 Date : Ada.Calendar.time := Util.Dates.ISO8601.Value (S);

AConstraint_Error exception is raisedwhen thedate string is not in the correct format. ## Localized
date formatting The Util.Dates.Formats provides a date formatting and parsing operation similar
to the Unix strftime, strptime or the GNAT.Calendar.Time_IO. The localization of month and
day labels is however handled through Util.Properties.Bundle (similar to the Javaworld). Unlike
strftime andstrptime, this allows to have amulti-threaded application that reports dates in several
languages. The GNAT.Calendar.Time_IO only supports English and this is the reason why it is not
used here.

The date pattern recognizes the following formats:

Format Description

%a The abbreviated weekday name according to the current locale.

%A The full weekday name according to the current locale.

%b The abbreviated month name according to the current locale.

%h Equivalent to %b. (SU)

%B The full month name according to the current locale.

%c The preferred date and time representation for the current locale.

%C The century number (year/100) as a 2-digit integer. (SU)

%d The day of the month as a decimal number (range 01 to 31).

%D Equivalent to %m/%d/%y

%e Like %d, the day of the month as a decimal number,

but a leading zero is replaced by a space. (SU)

%F Equivalent to %Y-%m-%d (the ISO 8601 date format). (C99)

%G The ISO 8601 week-based year

%H The hour as a decimal number using a 24-hour clock (range 00 to 23).

%I The hour as a decimal number using a 12-hour clock (range 01 to 12).

%j The day of the year as a decimal number (range 001 to 366).

Stephane Carrez 17

Ada Utility Library Programmer’s Guide 2021-07-25

Format Description

%k The hour (24 hour clock) as a decimal number (range 0 to 23);

%l The hour (12 hour clock) as a decimal number (range 1 to 12);

%m Themonth as a decimal number (range 01 to 12).

%M Theminute as a decimal number (range 00 to 59).

%n A newline character. (SU)

%p Either “AM” or “PM”

%P Like %p but in lowercase: “am” or “pm”

%r The time in a.m. or p.m. notation.

In the POSIX locale this is equivalent to %I:%M:%S%p. (SU)

%R The time in 24 hour notation (%H:%M).

%s The number of seconds since the Epoch, that is,

since 1970-01-01 00:00:00 UTC. (TZ)

%S The second as a decimal number (range 00 to 60).

%t A tab character. (SU)

%T The time in 24 hour notation (%H:%M:%S). (SU)

%u The day of the week as a decimal, range 1 to 7,

Monday being 1. See also %w. (SU)

%U The week number of the current year as a decimal

number, range 00 to 53

%V The ISO 8601 week number

%w The day of the week as a decimal, range 0 to 6,

Sunday being 0. See also %u.

%W The week number of the current year as a decimal number,

range 00 to 53

%x The preferred date representation for the current locale

without the time.

%X The preferred time representation for the current locale

Stephane Carrez 18

Ada Utility Library Programmer’s Guide 2021-07-25

Format Description

without the date.

%y The year as a decimal number without a century (range 00 to 99).

%Y The year as a decimal number including the century.

%z The timezone as hour o�set from GMT.

%Z The timezone or name or abbreviation.

The following str�ime flags are ignored:

Format Description

%E Modifier: use alternative format, see below. (SU)

%O Modifier: use alternative format, see below. (SU)

SU: Single Unix Specification C99: C99 standard, POSIX.1-2001

See str�ime (3) and strptime (3) manual page

To format and use the localize date, it is first necessary to get a bundle for the dates so that date
elements are translated into the given locale.

1 Factory : Util.Properties.Bundles.Loader;
2 Bundle : Util.Properties.Bundles.Manager;
3 ...
4 Load_Bundle (Factory, "dates", "fr", Bundle);

The date is formatted according to the pattern string described above. The bundle is used by the
formatter to use the day andmonth names in the expected locale.

1 Date : String := Util.Dates.Formats.Format (Pattern => Pattern,
2 Date => Ada.Calendar.

Clock,
3 Bundle => Bundle);

To parse a date according to a pattern and a localization, the same pattern string and bundle can be
used and the Parse function will return the date in split format.

1 Result : Date_Record := Util.Dates.Formats.Parse (Date => Date,

Stephane Carrez 19

Ada Utility Library Programmer’s Guide 2021-07-25

2 Pattern => Pattern,
3 Bundle => Bundle);

Stephane Carrez 20

Ada Utility Library Programmer’s Guide 2021-07-25

6 Ada Beans

A Java Bean(http://en.wikipedia.org/wiki/JavaBean) is an object that allows to access its properties
through getters and setters. Java Beans rely on the use of Java introspection to discover the Java Bean
object properties.

An Ada Bean has some similarities with the Java Bean as it tries to expose an object through a set of
common interfaces. Since Ada does not have introspection, some developer work is necessary. The
Ada Bean framework consists of:

• An Object concrete type that allows to hold any data type such as boolean, integer, floats,
strings, dates and Ada bean objects.

• A Bean interface that exposes a Get_Value and Set_Value operation throughwhich the object
properties can be obtained andmodified.

• AMethod_Bean interface that exposes a set ofmethodbindings that gives access to themethods
provided by the Ada Bean object.

The benefit of Ada beans comes when you need to get a value or invoke amethod on an object but you
don’t know at compile time the object or method. That step being done later through some external
configuration or presentation file.

The Ada Bean framework is the basis for the implementation of Ada Server Faces and Ada EL. It allows
the presentation layer to access information provided by Ada beans.

To use the packages described here, use the following GNAT project:

1 with "utilada_base";

6.1 Objects

The Util.Beans.Objects package provides a data type to manage entities of di�erent types by
using the same abstraction. The Object type allows to hold various values of di�erent types.

An Object can hold one of the following values:

• a boolean,

• a long long integer,

• a date,

• a string,

• a wide wide string,

Stephane Carrez 21

https://en.wikipedia.org/wiki/JavaBean
https://en.wikipedia.org/wiki/JavaBean
https://en.wikipedia.org/wiki/JavaBean
https://github.com/stcarrez/ada-asf
https://github.com/stcarrez/ada-el

Ada Utility Library Programmer’s Guide 2021-07-25

• a generic data

Several operations are provided to convert a value into an Object.

1 Value : Util.Beans.Objects.Object := Util.Beans.Objects.To_Object ("
something");

2 Value := Value + To_Object ("12");

6.2 Datasets

The Datasets package implements the Dataset list bean which defines a set of objects organized in
rows and columns. The Dataset implements the List_Bean interface and allows to iterate over its
rows. Each row defines a Bean instance and allows to access each column value. Each column is associ-
ated with a unique name. The row Bean allows to get or set the column by using the column name. ##
Bean Interface An AdaBean is an objectwhich implements theUtil.Beans.Basic.Readonly_Bean
or the Util.Beans.Basic.Bean interface. By implementing these interface, the object provides a
behavior that is close to the Java Beans: a getter and a setter operation are available.

Stephane Carrez 22

Ada Utility Library Programmer’s Guide 2021-07-25

7 Command Line Utilities

The Util.Commands package provides a support to help in writing command line applications. It
allows to have several commands in the application, each of them being identified by a unique name.
Each command has its own options and arguments. The command line support is built arround several
children packages.

The Util.Commands.Drivers package is a generic package that must be instantiated to define the
list of commands that the application supports. It provides operations to register commands and
then to execute them with a list of arguments. When a command is executed, it gets its name, the
command arguments and an application context. The application context can be used to provide
arbitrary information that is needed by the application.

The Util.Commands.Parsers package provides the support to parse the command line arguments.

The Util.Commands.Consoles package is a generic package that can help for the implementation
of a command to display its results. Its use is optional.

7.1 Command arguments

The Argument_List interface defines a common interface to get access to the command line argu-
ments. It has several concrete implementations. This is the interface type that is used by commands
registered and executed in the driver.

The Default_Argument_List gives access to the program command line arguments through the
Ada.Command_Line package.

The String_Argument_List allows to split a string into a list of arguments. It can be used to build
new command line arguments.

7.2 Command line driver

The Util.Commands.Drivers generic package provides a support to build command line tools
that have di�erent commands identified by a name. It defines the Driver_Type tagged record that
provides a registry of application commands. It gives entry points to register commands and execute
them.

The Context_Type package parameter defines the type for the Context parameter that is passed
to the command when it is executed. It can be used to provide application specific context to the
command.

The Config_Parser describes the parser package that will handle the analysis of command line
options. To use the GNAT options parser, it is possible to use the Util.Commands.Parsers.

Stephane Carrez 23

Ada Utility Library Programmer’s Guide 2021-07-25

GNAT_Parser package. ## Command line parsers Parsing command line arguments before their
execution is handled by the Config_Parser generic package. This allows to customize how the
arguments are parsed.

The Util.Commands.Parsers.No_Parser package can be used to execute the command without
parsing its arguments.

The Util.Commands.Parsers.GNAT_Parser.Config_Parser package provides support to parse
command line arguments by using the GNAT Getopt support.

7.3 Example

First, an application context type is defined to allow a command to get some application specific
information. The context type is passed during the instantiation of the Util.Commands.Drivers
package and will be passed to commands through the Execute procedure.

1 type Context_Type is limited record
2 ... -- Some application specific data
3 end record;
4 package Drivers is
5 new Util.Commands.Drivers
6 (Context_Type => Context_Type,
7 Config_Parser => Util.Commands.Parsers.GNAT_Parser.Config_Parser,
8 Driver_Name => "tool");

Then an instance of the command driver must be declared. Commands are then registered to the
command driver so that it is able to find them and execute them.

1 Driver : Drivers.Driver_Type;

A command canbe implementedby a simple procedure or by using theCommand_Type abstract tagged
record and implementing the Execute procedure:

1 procedure Command_1 (Name : in String;
2 Args : in Argument_List'Class;
3 Context : in out Context_Type);
4 type My_Command is new Drivers.Command_Type with null record;
5 procedure Execute (Command : in out My_Command;
6 Name : in String;
7 Args : in Argument_List'Class;
8 Context : in out Context_Type);

Stephane Carrez 24

Ada Utility Library Programmer’s Guide 2021-07-25

Commands are registered during the application initialization. And registered in the driver by using
the Add_Command procedure:

1 Driver.Add_Command (Name => "cmd1",
2 Description => "",
3 Handler => Command_1'Access);

Acommand is executedbygiving itsnameanda list of arguments. Byusing theDefault_Argument_List
type, it is possible to give to the command the application command line arguments.

1 Ctx : Context_Type;
2 Args : Util.Commands.Default_Argument_List (0);
3 ...
4 Driver.Execute ("cmd1", Args, Ctx);

Stephane Carrez 25

Ada Utility Library Programmer’s Guide 2021-07-25

8 Serialization of data structures in CSV/JSON/XML

8.1 Introduction

The Util.Serialize package provides a customizable framework to serialize and de-serialize data
structures in CSV, JSON and XML. It is inspired from the Java XStream library.

8.2 Record Mapping

The serialization relies on a mapping that must be provided for each data structure that must be read.
Basically, it consists in writing an enum type, a procedure and instantiating a mapping package. Let’s
assume we have a record declared as follows:

1 type Address is record
2 City : Unbounded_String;
3 Street : Unbounded_String;
4 Country : Unbounded_String;
5 Zip : Natural;
6 end record;

The enum type shall define one value for each record member that has to be serialized/deserialized.

1 type Address_Fields is (FIELD_CITY, FIELD_STREET, FIELD_COUNTRY,
FIELD_ZIP);

The de-serialization uses a specific procedure to fill the record member. The procedure that must be
written is in charge of writing one field in the record. For that it gets the record as an in out parameter,
the field identification and the value.

1 procedure Set_Member (Addr : in out Address;
2 Field : in Address_Fields;
3 Value : in Util.Beans.Objects.Object) is
4 begin
5 case Field is
6 when FIELD_CITY =>
7 Addr.City := To_Unbounded_String (Value);
8
9 when FIELD_STREET =>
10 Addr.Street := To_Unbounded_String (Value);
11
12 when FIELD_COUNTRY =>
13 Addr.Country := To_Unbounded_String (Value);
14

Stephane Carrez 26

https://x-stream.github.io/

Ada Utility Library Programmer’s Guide 2021-07-25

15 when FIELD_ZIP =>
16 Addr.Zip := To_Integer (Value);
17 end case;
18 end Set_Member;

The procedure will be called by the CSV, JSON or XML reader when a field is recognized.

The serialization to JSON or XML needs a function that returns the field value from the record value
and the field identification. The value is returned as aUtil.Beans.Objects.Object type which can hold
a string, a wide wide string, a boolean, a date, an integer or a float.

1 function Get_Member (Addr : in Address;
2 Field : in Address_Fields) return Util.Beans.

Objects.Object is
3 begin
4 case Field is
5 when FIELD_CITY =>
6 return Util.Beans.Objects.To_Object (Addr.City);
7
8 when FIELD_STREET =>
9 return Util.Beans.Objects.To_Object (Addr.Street);
10
11 when FIELD_COUNTRY =>
12 return Util.Beans.Objects.To_Object (Addr.Country);
13
14 when FIELD_ZIP =>
15 return Util.Beans.Objects.To_Object (Addr.Zip);
16
17 end case;
18 end Get_Member;

Amapping package has to be instantiated to provide the necessary glue to tie the set procedure to the
framework.

1 package Address_Mapper is
2 new Util.Serialize.Mappers.Record_Mapper
3 (Element_Type => Address,
4 Element_Type_Access => Address_Access,
5 Fields => Address_Fields,
6 Set_Member => Set_Member);

Note: a bug in the gcc compiler does not allow to specify the !Get_Member function in the generic
package. As a work-arround, the function must be associated with the mapping using the Bind proce-

Stephane Carrez 27

Ada Utility Library Programmer’s Guide 2021-07-25

dure.

8.3 Mapping Definition

The mapping package defines a Mapper type which holds the mapping definition. The mapping
definition tells a mapper what name correspond to the di�erent fields. It is possible to define several
mappings for the same record type. The mapper object is declared as follows:

1 Address_Mapping : Address_Mapper.Mapper;

Then, each field is bound to a name as follows:

1 Address_Mapping.Add_Mapping ("city", FIELD_CITY);
2 Address_Mapping.Add_Mapping ("street", FIELD_STREET);
3 Address_Mapping.Add_Mapping ("country", FIELD_COUNTRY);
4 Address_Mapping.Add_Mapping ("zip", FIELD_ZIP);

Once initialized, the samemapper can be used read several files in several threads at the same time
(the mapper is only read by the JSON/XML parsers).

8.4 De-serialization

To de-serialize a JSON object, a parser object is created and one or several mappings are defined:

1 Reader : Util.Serialize.IO.JSON.Parser;
2 ...
3 Reader.Add_Mapping ("address", Address_Mapping'Access);

For an XML de-serialize, we just have to use another parser:

1 Reader : Util.Serialize.IO.XML.Parser;
2 ...
3 Reader.Add_Mapping ("address", Address_Mapping'Access);

For a CSV de-serialize, we just have to use another parser:

1 Reader : Util.Serialize.IO.CSV.Parser;
2 ...
3 Reader.Add_Mapping ("", Address_Mapping'Access);

The next step is to indicate the object that the de-serialization will write into. For this, the generic
package provided the !Set_Context procedure to register the root object that will be filled according
to the mapping.

Stephane Carrez 28

Ada Utility Library Programmer’s Guide 2021-07-25

1 Addr : aliased Address;
2 ...
3 Address_Mapper.Set_Context (Reader, Addr'Access);

The Parse procedure parses a file using a CSV, JSON or XML parser. It uses the mappings registered by
Add_Mapping and fills the objects registered by Set_Context. When the parsing is successful, the
Addr object will hold the values.

1 Reader.Parse (File);

8.5 Parser Specificities

8.5.1 XML

XML has attributes and entities both of them being associated with a name. For themapping, to specify
that a value is stored in an XML attribute, the name must be prefixed by the **@** sign (this is very
close to an XPath expression). For example if the city XML entity has an id attribute, we could map it
to a field FIELD_CITY_ID as follows:

1 Address_Mapping.Add_Mapping ("city/@id", FIELD_CITY_ID);

8.5.2 CSV

A CSV file is flat and each row is assumed to contain the same kind of entities. By default the CSV file
contains as first row a column header which is used by the de-serialization to make the column field
association. Themapping defined through Add_Mapping uses the column header name to indicate
which column correspond to which field.

If a CSV file does not contain a column header, the mapping must be created by using the default
column header names (Ex: A, B, C, . . . , AA, AB, . . .). The parser must be told about this lack of column
header:

1 Parser.Set_Default_Headers;

Stephane Carrez 29

Ada Utility Library Programmer’s Guide 2021-07-25

9 HTTP

The Util.Http package provides a set of APIs that allows applications to use the HTTP protocol. It
defines a common interface on top of CURL and AWS so that it is possible to use one of these two
libraries in a transparent manner.

9.1 Client

The Util.Http.Clients package defines a set of API for an HTTP client to send requests to an HTTP server.

9.1.1 GET request

To retrieve a content using the HTTP GET operation, a client instance must be created. The response is
returned in a specific object that must therefore be declared:

1 Http : Util.Http.Clients.Client;
2 Response : Util.Http.Clients.Response;

Before invoking the GET operation, the client can setup a number of HTTP headers.

1 Http.Add_Header ("X-Requested-By", "wget");

The GET operation is performed when the Get procedure is called:

1 Http.Get ("http://www.google.com", Response);

Once the response is received, the Response object contains the status of the HTTP response, the HTTP
reply headers and the body. A response header can be obtained by using the Get_Header function and
the body using Get_Body:

1 Body : constant String := Response.Get_Body;

Stephane Carrez 30

Ada Utility Library Programmer’s Guide 2021-07-25

10 Streams

The Util.Streams package provides several types and operations to allow the composition of input
and output streams. Input streams can be chained together so that they traverse the di�erent stream
objects when the data is read from them. Similarly, output streams can be chained and the data that is
written will traverse the di�erent streams from the first one up to the last one in the chain. During such
traversal, the stream object is able to bu�erize the data or make transformations on the data.

The Input_Stream interface represents the stream to read data. It only provides a Read procedure.
The Output_Stream interface represents the stream to write data. It provides a Write, Flush and
Close operation.

To use the packages described here, use the following GNAT project:

1 with "utilada_sys";

10.1 Bu�ered Streams

The Output_Buffer_Stream and Input_Buffer_Stream implement an output and input stream
respectively which manages an output or input bu�er. The data is first written to the bu�er and when
the bu�er is full or flushed, it gets written to the target output stream.

TheOutput_Buffer_Streammust be initialized to indicate the bu�er size aswell as the target output
streamontowhich the datawill be flushed. For example, a pipe stream could be created and configured
to use the bu�er as follows:

1 with Util.Streams.Buffered;
2 with Util.Streams.Pipes;
3 ...
4 Pipe : aliased Util.Streams.Pipes.Pipe_Stream;
5 Buffer : Util.Streams.Buffered.Output_Buffer_Stream;
6 ...
7 Buffer.Initialize (Output => Pipe'Access,
8 Size => 1024);

In this example, the bu�er of 1024 bytes is configured to flush its content to the pipe input stream so that
what is written to the bu�er will be received as input by the program. The Output_Buffer_Stream
provides write operation that deal only with binary data (Stream_Element). To write text, it is
best to use the Print_Stream type from the Util.Streams.Texts package as it extends the
Output_Buffer_Stream and provides several operations to write character and strings.

The Input_Buffer_Streammust also be initialized to also indicate the bu�er size and either an input

Stephane Carrez 31

Ada Utility Library Programmer’s Guide 2021-07-25

stream or an input content. When configured, the input stream is used to fill the input stream bu�er.
The bu�er configuration is very similar as the output stream:

1 with Util.Streams.Buffered;
2 with Util.Streams.Pipes;
3 ...
4 Pipe : aliased Util.Streams.Pipes.Pipe_Stream;
5 Buffer : Util.Streams.Buffered.Input_Buffer_Stream;
6 ...
7 Buffer.Initialize (Input => Pipe'Access, Size => 1024);

In this case, the bu�er of 1024 bytes is filled by reading the pipe stream, and thus getting the program’s
output. ## Texts The Util.Streams.Texts package implements text oriented input and output
streams. The Print_Stream type extends the Output_Buffer_Stream to allowwriting text content.

The Reader_Stream type extends the Input_Buffer_Stream and allows to read text content. ##
File streams The Util.Streams.Files package provides input and output streams that access files
on top of the AdaStream_IO standard package. ## Pipes TheUtil.Streams.Pipespackage defines
a pipe stream to or from a process. It allows to launch an external programwhile getting the program
standard output or providing the program standard input. The Pipe_Stream type represents the
input or output stream for the external program. This is a portable interface that works on Unix and
Windows.

The process is created and launched by the Open operation. The pipe allows to read or write to the
process through the Read and Write operation. It is very close to the popen operation provided by
the C stdio library. First, create the pipe instance:

1 with Util.Streams.Pipes;
2 ...
3 Pipe : aliased Util.Streams.Pipes.Pipe_Stream;

The pipe instance can be associated with only one process at a time. The process is launched by using
the Open command and by specifying the command to execute as well as the pipe redirection mode:

• READ to read the process standard output,

• WRITE to write the process standard input.

For example to run the ls -l command and read its output, we could run it by using:

1 Pipe.Open (Command => "ls -l", Mode => Util.Processes.READ);

ThePipe_Stream is notbu�eredandabu�er canbeconfiguredeasilybyusing theInput_Buffer_Stream
type and connecting the bu�er to the pipe so that it reads the pipe to fill the bu�er. The initialization

Stephane Carrez 32

Ada Utility Library Programmer’s Guide 2021-07-25

of the bu�er is the following:

1 with Util.Streams.Buffered;
2 ...
3 Buffer : Util.Streams.Buffered.Input_Buffer_Stream;
4 ...
5 Buffer.Initialize (Input => Pipe'Access, Size => 1024);

And to read the process output, one can use the following:

1 Content : Ada.Strings.Unbounded.Unbounded_String;
2 ...
3 Buffer.Read (Into => Content);

The pipe object should be closed when reading or writing to it is finished. By closing the pipe, the
caller will wait for the termination of the process. The process exit status can be obtained by using the
Get_Exit_Status function.

1 Pipe.Close;
2 if Pipe.Get_Exit_Status /= 0 then
3 Ada.Text_IO.Put_Line ("Command exited with status "
4 & Integer'Image (Pipe.Get_Exit_Status));
5 end if;

You will note that the Pipe_Stream is a limited type and thus cannot be copied. When leaving the
scope of the Pipe_Stream instance, the application will wait for the process to terminate.

Before opening the pipe, it is possible to have some control on the process that will be created to
configure:

• The shell that will be used to launch the process,

• The process working directory,

• Redirect the process output to a file,

• Redirect the process error to a file,

• Redirect the process input from a file.

All these operations must be made before calling the Open procedure. ## Sockets The
Util.Streams.Sockets package defines a socket stream. ## Raw files The Util.Streams.Raw package
provides a stream directly on top of file system operations read and write. ## Base16 Encoding Streams
The Util.Streams.Base16 package provides streams to encode and decode the stream using
Base16. ## Base64 Encoding Streams The Util.Streams.Base64 package provides streams to

Stephane Carrez 33

Ada Utility Library Programmer’s Guide 2021-07-25

encode and decode the stream using Base64. ## AES Encoding Streams The Util.Streams.AES
package define the Encoding_Stream and Decoding_Stream types to encrypt and decrypt using
the AES cipher. Before using these streams, you must use the Set_Key procedure to setup the
encryption or decryption key and define the AES encryptionmode to be used. The following encryption
modes are supported:

• AES-ECB

• AES-CBC

• AES-PCBC

• AES-CFB

• AES-OFB

• AES-CTR

The encryption and decryption keys are represented by the Util.Encoders.Secret_Key limited
type. The key cannot be copied, has its content protected and will erase the memory once the instance
is deleted. The size of the encryption key defines the AES encryption level to be used:

• Use 16 bytes, or Util.Encoders.AES.AES_128_Length for AES-128,

• Use 24 bytes, or Util.Encoders.AES.AES_192_Length for AES-192,

• Use 32 bytes, or Util.Encoders.AES.AES_256_Length for AES-256.

Other key sizes will raise a pre-condition or constraint error exception. The recommended key size is
32 bytes to use AES-256. The key could be declared as follows:

1 Key : Util.Encoders.Secret_Key
2 (Length => Util.Encoders.AES.AES_256_Length);

The encryption and decryption key are initialized by using the Util.Encoders.Create operations or
by using one of the key derivative functions provided by the Util.Encoders.KDF package. A simple
string password is created by using:

1 Password_Key : constant Util.Encoders.Secret_Key
2 := Util.Encoders.Create ("mysecret");

Using a password key like this is not the good practice and it may be useful to generate a stronger key
by using one of the key derivative function. We will use the PBKDF2 HMAC-SHA256 with 20000 loops
(see RFC 8018):

1 Util.Encoders.KDF.PBKDF2_HMAC_SHA256 (Password => Password_Key,
2 Salt => Password_Key,

Stephane Carrez 34

https://tools.ietf.org/html/rfc8018

Ada Utility Library Programmer’s Guide 2021-07-25

3 Counter => 20000,
4 Result => Key);

To write a text, encrypt the content and save the file, we can chain several stream objects together.
Because they are chained, the last streamobject in the chainmust bedeclared first and the first element
of the chain will be declared last. The following declaration is used:

1 Out_Stream : aliased Util.Streams.Files.File_Stream;
2 Cipher : aliased Util.Streams.AES.Encoding_Stream;
3 Printer : Util.Streams.Texts.Print_Stream;

The stream objects are chained together by using their Initialize procedure. The Out_Stream is
configured to write on the encrypted.aes file. The Cipher is configured to write in the Out_Stream
with a 32Kb bu�er. The Printer is configured to write in the Cipherwith a 4Kb bu�er.

1 Out_Stream.Initialize (Mode => Ada.Streams.Stream_IO.In_File,
2 Name => "encrypted.aes");
3 Cipher.Initialize (Output => Out_Stream'Access,
4 Size => 32768);
5 Printer.Initialize (Output => Cipher'Access,
6 Size => 4096);

The last step before using the cipher is to configure the encryption key andmodes:

1 Cipher.Set_Key (Secret => Key, Mode => Util.Encoders.AES.ECB);

It is now possible to write the text by using the Printer object:

1 Printer.Write ("Hello world!");

Stephane Carrez 35

Ada Utility Library Programmer’s Guide 2021-07-25

10.1.1 Encoder and Decoders

The Util.Encoders package defines the Encoder and Decode objects which provide amechanism to
transform a stream from one format into another format.

Simple encoding and decoding

Stephane Carrez 36

Ada Utility Library Programmer’s Guide 2021-07-25

10.2 Timer Management

The Util.Events.Timers package provides a timer list that allows to have operations called on regular
basis when a deadline has expired. It is very close to the Ada.Real_Time.Timing_Events package but
it provides more flexibility by allowing to have several timer lists that run independently. Unlike the
GNAT implementation, this timer list management does not use tasks at all. The timer list can therefore
be used in a mono-task environment by the main process task. Furthermore you can control your own
task priority by having your own task that uses the timer list.

The timer list is created by an instance of Timer_List:

1 Manager : Util.Events.Timers.Timer_List;

The timer list is protected against concurrent accesses so that timing events can be setup by a task but
the timer handler is executed by another task.

10.2.1 Timer Creation

A timer handler is defined by implementing the Timer interface with the Time_Handler procedure. A
typical timer handler could be declared as follows:

1 type Timeout is new Timer with null record;
2 overriding procedure Time_Handler (T : in out Timeout);
3 My_Timeout : aliased Timeout;

The timer instance is represented by the Timer_Ref type that describes the handler to be called as well
as the deadline time. The timer instance is initialized as follows:

1 T : Util.Events.Timers.Timer_Ref;
2 Manager.Set_Timer (T, My_Timeout'Access, Ada.Real_Time.Seconds (1));

10.2.2 Timer Main Loop

Because the implementation does not impose any execution model, the timer management must be
called regularly by some application’s main loop. The Process procedure executes the timer handler
that have ellapsed and it returns the deadline to wait for the next timer to execute.

1 Deadline : Ada.Real_Time.Time;
2 loop
3 ...
4 Manager.Process (Deadline);
5 delay until Deadline;

Stephane Carrez 37

Ada Utility Library Programmer’s Guide 2021-07-25

6 end loop;

Stephane Carrez 38

Ada Utility Library Programmer’s Guide 2021-07-25

11 Performance Measurements

Performance measurements is o�enmade using profiling tools such as GNU gprof or others. This pro-
filing is however not always appropriate for production or release delivery. The mechanism presented
here is a lightweight performance measurement that can be used in production systems.

The Ada package Util.Measures defines the types and operations to make performancemeasure-
ments. It is designed to be used for production andmulti-threaded environments.

11.1 Create themeasure set

Measures are collected in aMeasure_Set. Eachmeasurehas aname, a counter anda sumof time spent
for all the measure. The measure set should be declared as some global variable. The implementation
is thread safe meaning that a measure set can be used by several threads at the same time. It can also
be associated with a per-thread data (or task attribute).

To declare the measure set, use:

1 with Util.Measures;
2 ...
3 Perf : Util.Measures.Measure_Set;

11.2 Measure the implementation

A measure is made by creating a variable of type Stamp. The declaration of this variable marks the
begining of the measure. The measure ends at the next call to the Report procedure.

1 with Util.Measures;
2 ...
3 declare
4 Start : Util.Measures.Stamp;
5 begin
6 ...
7 Util.Measures.Report (Perf, Start, "Measure for a block");
8 end;

When theReportprocedure is called, the time that elapsedbetween the creation of theStart variable
and the procedure call is computed. This time is then associated with the measure title and the
associated counter is incremented. The precision of the measured time depends on the system. On
GNU/Linux, it uses gettimeofday.

Stephane Carrez 39

Ada Utility Library Programmer’s Guide 2021-07-25

If the block code is executed several times, the measure set will report the number of times it was
executed.

11.3 Reporting results

A�er measures are collected, the results can be saved in a file or in an output stream. When saving the
measures, the measure set is cleared.

1 Util.Measures.Write (Perf, "Title of measures",
2 Ada.Text_IO.Standard_Output);

11.4 Measure Overhead

The overhead introduced by the measurement is quite small as it does not exceeds 1.5 us on a 2.6 Ghz
Core Quad.

11.5 What must bemeasured

Defining a lot of measurements for a production system is in general not very useful. Measurements
should be relatively high level measurements. For example:

• Loading or saving a file

• Rendering a page in a web application

• Executing a database query

Stephane Carrez 40

	Introduction
	Installation
	Before Building
	Configuration
	Build
	Installation
	Using

	Logging
	Using the log framework
	Logger Declaration
	Logger Messages
	Log Configuration

	Property Files
	File formats
	Using property files
	Reading JSON property files
	Property bundles
	Advance usage of properties

	Date Utilities
	Date Operations
	RFC7231 Dates

	Ada Beans
	Objects
	Datasets

	Command Line Utilities
	Command arguments
	Command line driver
	Example

	Serialization of data structures in CSV/JSON/XML
	Introduction
	Record Mapping
	Mapping Definition
	De-serialization
	Parser Specificities
	XML
	CSV

	HTTP
	Client
	GET request

	Streams
	Buffered Streams
	Encoder and Decoders

	Timer Management
	Timer Creation
	Timer Main Loop

	Performance Measurements
	Create the measure set
	Measure the implementation
	Reporting results
	Measure Overhead
	What must be measured

