
Advanced Resource Embedder

Stephane Carrez

2024-11-11

Advanced Resource Embedder 2024-11-11

Contents

1 Introduction 3

2 Installation 5
2.1 Before Building . 5

2.1.1 Ubuntu 24.04 . 5
2.1.2 FreeBSD 14 . 5
2.1.3 Windows . 5

2.2 Getting the sources . 5
2.3 Using Alire . 6

2.3.1 Build . 6
2.3.2 Installation . 6

3 Using Advanced Resource Embedder 7
3.1 Defining resources . 7
3.2 Selecting files . 8
3.3 Integration modes . 9
3.4 Custom headers . 9
3.5 Controlling the lines format . 10
3.6 Other control for the generation . 11
3.7 Man page . 12

3.7.1 NAME . 12
3.7.2 SYNOPSIS . 12
3.7.3 DESCRIPTION . 12
3.7.4 OPTIONS . 13
3.7.5 RULE DESCRIPTION . 15
3.7.6 INSTALL MODES . 16
3.7.7 SEE ALSO . 16
3.7.8 AUTHOR . 16

4 Rules 17
4.1 Install mode: copy and copy-first . 17
4.2 Install mode: concat . 18
4.3 Install mode: exec and copy-exec . 18
4.4 Install mode: bundles . 19
4.5 Install mode: webmerge . 19

Stephane Carrez 1

Advanced Resource Embedder 2024-11-11

5 Generator 21
5.1 Ada Generator . 21
5.2 C Generator . 22
5.3 Go Generator . 23

Stephane Carrez 2

Advanced Resource Embedder 2024-11-11

1 Introduction

Incorporating files in a binary program can sometimes be a challenge. The Advance Resource
Embedder is a flexible tool that collects files such as documentation, images, scripts, configuration
files and generates a source code that contains these files. It is able to apply some transformations on
the collected files:

• it can run a Javascript minifier such as closure,
• it can compress CSS files by running yui-compressor,
• it can compress files by running gzip or another compression tool.

Once these transformations are executed, it invokes a target generator to produce a source file either
in C, Ada or Go language. The generated source file can then be used in the final program and taken
into account during the compilation process of that program. At the end, the binary will contain the
embedded files with their optional transformations.

Figure 1: Resource Embedder Overview

The process to use ARE is simple:

• You describe the resources that you want to embed. The description is either made on command
line arguments or by writing an XML file. The XML description gives more flexibility as it allows to
define a transformation rule that must be executed on the original file before being embedded.

Stephane Carrez 3

Advanced Resource Embedder 2024-11-11

This allows to minify a Javascript or CSS file, compress some files and even encrypt a file before
its integration.

• You run the ARE command with your target language and rule description and you give the tool a
list of directories that must be scanned to identify the files that must be collected. The ARE tool
scan the directories according to the patterns that you have given either on the command line
or in the XML rule description. After identifying the files, the tool applies the rules and execute
the transformations. The ARE tool then invokes the target language generator that writes one or
several files depending on the list of resources.

• Once the files are generated, you use them in your program and add them in your build process
as they are now part of your sources. After building your program, it now embeds the resource
files that were collected and optionally transformed.

This document describes how to build the tool and how you can use the different features to embed
files in a binary program witten in Ada, C/C++ or Go.

Stephane Carrez 4

Advanced Resource Embedder 2024-11-11

2 Installation

This chapter explains how to build and install the tool.

2.1 Before Building

To buildAdvanced Resource Embedder you will need the GNAT Ada compiler as well as the Alire
package manager.

2.1.1 Ubuntu 24.04

Install the following packages:

1 sudo apt install -y make git alire
2 sudo apt install -y gnat gprbuild

2.1.2 FreeBSD 14

Install the following packages:

1 pkg install gmake gnat13 gprbuild git alire

2.1.3 Windows

Get the Alire package manager Alire site and install.

Install the following packages:

1 pacman -S git
2 pacman -S make
3 pacman -S base-devel --needed

2.2 Getting the sources

You should checkout the project with the following commands:

1 git clone https://gitlab.com/stcarrez/resource-embedder.git
2 cd resource-embedder

Stephane Carrez 5

https://alire.ada.dev/
https://alire.ada.dev/

Advanced Resource Embedder 2024-11-11

2.3 Using Alire

The Advanced Resource Embedder is available as an Alire crate to simplify the installation and
setup your project. Run the following commands to setup your project to use the library:

1 alr index --update-all
2 alr with are

2.3.1 Build

After configuration is successful, you can build the library by running:

1 make

Note that on FreeBSD and NetBSD, you must use gmake instead of make.

After building, it is good practice to run the unit tests before installing the library. The unit tests are
built and executed using:

1 make test

2.3.2 Installation

The installation is done by running the install target:

1 make install

If you want to install on a specific place, you can change the prefix and indicate the installation
direction as follows:

1 make install prefix=/opt

Stephane Carrez 6

Advanced Resource Embedder 2024-11-11

3 Using Advanced Resource Embedder

To embed files and generate Ada, C or Go source file, the Advanced Resource Embeddermust
identify the files, organize them and may be perform some transformation on these files before their
integration. To control this process, it is possible to use some options passed to the are (1) tool but
a better control is achieved by using an XML configuration file.

3.1 Defining resources

The XML file describes a list of resources that must be generated. It is introduced by the package root
XML element and each resource is represented by a resource XML element. A resource is assigned a
name and composed of several installation rules that describe how files are integrated and whether
some transformations are made before their integration.

1 <package>
2 <resource name='Help' format='string'>
3 <install mode='xxx'>
4 ...
5 </install>
6 <resource>
7 <resource name='Config' format='lines'>
8 <install mode='xxx'>
9 ...

10 </install>
11 </resource>
12 <resource name='Web' format='binary'>
13 <install mode='xxx'>
14 ...
15 </install>
16 <install mode='yyy'>
17 ...
18 </install>
19 </resource>
20 ...
21 </package>

The resource content can be available in several formats by the code generator. This format is controlled
by the format attribute. The following data formats are supported:

• binary format provides the file content as a binary data.
• string format provides the file content as string.
• lines format splits the content in several lines and according to a set of customisable rules.

To help you in the control of the generated code, the resource description can also define specific
attributes that allow you to tune the code generator. The following XML definition:

Stephane Carrez 7

Advanced Resource Embedder 2024-11-11

1 <package>
2 <resource name='Help'
3 type="man_content"
4 function-name="man_get_help_content">
5 <install mode='copy'>
6 <fileset dir="help">
7 <include name="**/*.txt"/>
8 </fileset>
9 </install>

10 </resource>
11 ...
12 </package>

creates a resource named Help and composed of text files located in the help directory and with
the .txt file extension. The code generator will use the name man_content for the data type that
represents the file description and it will use man_get_help_content for the generated function
name.

3.2 Selecting files

An important step in the configuration of the Advanced Resource Embedder is the selection of
files that will be embedded. The mechanism to select files is heavily inspired by the ant (1) Java
builder with the notion of filesets and patterns.

A fileset describes a collection of files stored in a directory and it uses a set of inclusion and exclusion
patterns to select files of that directory. A fileset is described by the fileset XML element and it can
contain several include and exclude XML element. Each include element describes a pattern
that the file must match to be taken into account. Sometimes a file can be matched but you want to
exclude it and you will use the exclude XML element to reject that file.

A pattern a either a fixed relative path or it may contain wildcards. A single wildcard pattern applies
only to a single directory and the special notation **/ indicates to match any child directory.

The following definition:

1 <fileset>
2 <include name="*.html"/>
3 <include name="*.css"/>
4 <include name="*.js"/>
5 <exclude name="test.js"/>
6 </fileset>

will select files from the directories passed to the are tool and it takes into account only files with
.html, .css and .js extension. Child directories are excluded as well as the test.js file if it
exists.

Stephane Carrez 8

Advanced Resource Embedder 2024-11-11

A fileset can indicate a directory name by using the dir attribute. In that case, the file selection will
start from the directory with the given name.

1 <fileset dir='web'>
2 <include name="**/*.html"/>
3 <include name="**/*.css"/>
4 <include name="**/*.js"/>
5 <exclude name="preview/**"/>
6 </fileset>

That definition scans thewebdirectory for each argument passed to theare tool and selects recursively
all .html, .css and .js files. If the web directory contains a preview directory, that directory and
any file it contains will be excluded.

You may include and combine several fileset XML element to describe complex file selection.

3.3 Integration modes

The Advanced Resource Embedder provides several modes for the integration of a file. After
files are matched, a decision must be made on the files to integrate them in the output. Sometimes it
happens that several source files will correspond to a single output. For this integration, it is possible
to make some specific transformations.

The installation rule is described by the install XML element. That rule in fact contains the fileset
that indicates the files that must be taken into account by the installation rule.

1 <install mode='copy'>
2 <fileset>
3 <include name='**/*.txt'/>
4 </fileset>
5 </install>

The installation modes are described more into details in the Rules chapter.

3.4 Custom headers

It is possible to add custom headers in the generated files by using theheaderXML element within each
resource. Each header element is written verbatim in the output code. It can contain comment
or some target source code. A type attribute can be defined to limit in which file the header content
is written. By default, the header line is written in the specification (.ads, .h) and body files (.adb,
.c).

1 <package>
2 <resource ...>

Stephane Carrez 9

Are_Installer.md

Advanced Resource Embedder 2024-11-11

3 <header>...</header>
4 <header type='spec'>...</header>
5 <header type='body'>...</header>
6 ...
7 </resource>
8 ...
9 </package>

3.5 Controlling the lines format

The lines format tells the code generator to represent the content as an array of separate lines. For
this integration, some control is available to indicate how the content must be split and optionaly apply
some filter on the input content. These controls are made within the XML description by using theline
-separator andline-filter description: Theline-separator indicates the characters that
represent a line separation. There can be several line-separator definition. The line-filter
defines a regular expression that when matched must be replaced by an empty string or a specified
content. The line-filter are applied in the order of the XML definition.

The example below is intended to integrate an SQL scripts with:

• a separate line for each SQL statement,
• remove spurious empty lines and SQL comments.

The SQL statements are separated by ; (semi-colon) and the line-separator indicates to split
lines on that character. By splitting on the ;, we allow to have an SQL statement on multiple lines.

1 <package>
2 <resource name='Scripts'
3 format='lines' keep-empty-lines="no"
4 type='access constant String'>
5 <line-separator>;</line-separator>
6
7 <!-- Remove new lines -->
8 <line-filter>[\r\n]</line-filter>
9

10 <!-- Remove C comments -->
11 <line-filter>/*[^/]**/</line-filter>
12
13 <!-- Remove contiguous spaces after C comments removal -->
14 <line-filter replace=' '>[\t][\t]+</line-filter>
15
16 <install mode='copy' strip-extension='yes'>
17 <fileset dir="sql">
18 <include name="**/*.sql"/>
19 </fileset>
20 </install>

Stephane Carrez 10

Advanced Resource Embedder 2024-11-11

21 </resource>
22 </package>

Then the first line-filter will remove the \r and \n characters.

The regular expression /*[^/]**/matches a C style comment and remove it.

The last line-filter replaces multiple tabs and spaces by a single occurence.

By default an empty line is discarded. This behavior can be changed by using the keep-empty-
lines attribute and setting the value to true.

3.6 Other control for the generation

The generation can be controlled with several attributes defined on the resource XML element.

1 <package>
2 <resource name='...'
3 format='...'
4 type='...'
5 function-name='...'
6 index-type='...'
7 member-content='...'
8 member-time='...'
9 member-length='...'

10 member-format='...'
11 var-prefix='...'
12 keep-empty-lines='...'
13 content-only='...'
14 var-access='...'
15 name-access='...'
16 list-access='...'>
17 </resource>
18 </package>

Attribute Type Description

name String Name used for the target generation (file name or Ada package name)

format String Define the format used to embed the selected files

type String The name of the type to access content

function-
name

String The name of the generated function

index-type String For Ada, the type of index used for array declaration

Stephane Carrez 11

Advanced Resource Embedder 2024-11-11

Attribute Type Description

var-prefix String The prefix to used for variable name generation when a variable must be created
for each content

var-access BooleanWhen true, generate a variable to access the content directly through a variable

name-
access

BooleanWhen true, generate a function to access the content from the file name

list-access BooleanWhen true, generate a function to list the available names

3.7 Man page

3.7.1 NAME

are - Resource embedder to include files in Ada, C/C++, Go binaries

3.7.2 SYNOPSIS

are [-v] [-vv] [-V] [–tmp directory] [-k] [–keep] [-o directory] [-l lang] [–rule path] [–resource name]
[–fileset pattern] [–ignore-case] [–list-access] [–var-access] [–var-prefix prefix] [–no-type-declaration]
[–type-name name] [–function-name name] [–member-content name] [–member-length name]
[–member-modtime name] [–member-format name] [–preelaborate] [–content-only] directory. . .

3.7.3 DESCRIPTION

are is a tool to generate C, Ada or Go source allowing to embed files in a binary program by compiling
and linking with the compiled generated sources.

The process to use are is simple and composed of three steps:

• First, you describe the resources that you want to embed. The description is either made on
command line arguments or by writing an XML file. The XML description gives more flexibility as
it allows to define a transformation rule that must be executed on the original file before being
embedded. This allows to minify a Javascript or CSS file, compress some files and even encrypt
a file before its integration.

• You run the are command with the your target language and rule description and you give the
tool a list of directories that must be scanned to identify the files that must be collected. The are

Stephane Carrez 12

Advanced Resource Embedder 2024-11-11

tool scan the directories according to the patterns that you have given either on the command
line or in the XML rule description. After identifying the files, the tool applies the rules and execute
the transformations. The are tool then invokes the target language generator that writes one or
several files depending on the list of resources.

• Once the files are generated, you use them in your program and add them in your build process
as they are now part of your sources. After building your program, it now embeds the resource
files that were collected and optionally transformed.

The identification of files is made by using fileset patterns similar to the ant(1) tool. The patterns are
applied to the directories that are passed to the are tool. Files that match the pattern are selected and
taken into account. The pattern can be an exact relative path definition or it may contain wildcards.
Below are some examples:

.txt This pattern matches all files with a .txt* extension in the directories passed to the command. Only
the root directories are taken into account (the .txt files in sub-directories are ignored).

/.txt The /* pattern indicates that the pattern is applied on directories recursively. The files must then
match the .txt* pattern to be taken into account. Therefore, the /.txt* pattern will match all .txt files
in any directory.

config/.conf This pattern will match the .conf* files in the config directory.

web/index.html This pattern matches a fixed path.

3.7.4 OPTIONS

The following options are recognized by are:

-V Prints the are version.

-v Enable the verbose mode.

-vv Enable debugging output.

–tmp directory Use the directory to build the resource files. The default directory is are-generator and
it is created in the current working directory. This option allows to choose another path.

–keep Keep the directory used to prepare the resource files. By default the are-generator directory
(which can be overriden by the –tmp option) is removed when the code generation is finished. By
keeping the directory, you can have a look at the files and their transformations.

–output directory Set the output directory path where generators writes the code.

–lang language Select the target generator language. The supported languages are Ada, C, and Go.
The default language is Ada.

Stephane Carrez 13

Advanced Resource Embedder 2024-11-11

–rule path Read the XML file that describes the resources to generate. The use of a XML resource
file allows to use the advance features of the tool such as doing some transformations on the input
files. The XML resource file can describe several resources and provides mechanisms to control the
generation for each of them.

–resource name Define the name of the resource collection. This option is used to create a resource
with the given name.

–fileset pattern Define the pattern to match files for the resource collection. After the –resource option,
this indicates the pattern to match the files for that resource.

–name-access Generate support to query content with a name. The code generator will declare and
genrate a function which given a name returns the embedded content if that name is known.

–list-access Generate support to list the content names. Most code generator will declare a variable
that represents a sorted list of names which represents the resource. It is possible to use a dichotomic
search on that name array.

–var-access Declare a variable to give access to each content. When this option is given, the code
generator will emit a global variable declaration with the name of the file. By using the global variable,
the program can access the resource directly.

–var-prefix prefix Defines the prefix to be used for the variable declarations that give access access to
each content. This option implies the –var-access option.

–no-type-declaration Do not declare any type in the package specification. It is assumed that the types
used by the generated code is declared somewhere else and is visible during the compilation.

–type-name name Define the name of the type used to hold the information. This is the name of the C,
Ada or Go type that is generated. It must be a valid name of the target language.

–member-content name Define the name data structure member holding the content.

–member-length name Define the name data structure member holding the length.

–member-modtime name Define the name data structure member holding the modification time.

–member-format name Define the name data structure member holding the content format

–preelaborate This option is recognized by the Ada generator and it tells it to emit a pragma Preelaborate
in the generated specification file.

–content-only This option is specific to the Ada generator and instructs the generator to only give access
to the content.

Stephane Carrez 14

Advanced Resource Embedder 2024-11-11

3.7.5 RULE DESCRIPTION

The rule descritions are best expressed by using an XML file. The XML file can describe several resources
and for each of them it defines the files that must be included with their optional transformation. The
XML file must have a package root element.

A resource is described by the resource XML element with a mandatory name attribute that indicates
the name of the resource. It then contains an install XML element which describes the installation rule
with the patterns that identify the files.

1 <package>
2 <resource name='help' format='string'>
3 <header>-- Some header comment</header>
4 <install mode='copy'>
5 <fileset dir='help'>
6 <include name='**/*.txt'/>
7 </fileset>
8 </install>
9 </resource>

10 </package>

A resource can be represented as an array of strings by using the lines format. In that case, a line-
separator XML element indicates the character on which lines are split. The keep-empty-lines attribute
controls whether an empty line is kept or must be discarded. The default will discard empty lines. With
the lines format, the final content will be represented as an array of strings.

1 <package>
2 <resource name='help' format='lines' keep-empty-lines='true'>
3 <line-separator>\\r</line-separator>
4 <line-separator>\\n</line-separator>
5 <install mode='copy'>
6 <fileset dir='help'>
7 <include name='**/*.txt'/>
8 </fileset>
9 </install>

10 </resource>
11 </package>

The special format map reads the content of files which are collected and produce a mapping table
with them. The files can be a JSON file with name/value pairs and the mapping table will provide an
efficient conversion of a name into the corresponding value.

1 <package>
2 <resource name='Extensions_Map' format='map'
3 type='access constant String'>
4 <mapper type='json'/>
5 <install mode='copy'>
6 <fileset dir='.'>

Stephane Carrez 15

Advanced Resource Embedder 2024-11-11

7 <include name='**/*.json'/>
8 </fileset>
9 </install>

10 </resource>
11 </package>

3.7.6 INSTALL MODES

The are tool provides several installation modes:

copy Copy the file.

copy-first Copy the first file.

exec Execute a command with the file.

copy-exec The file is copied and a command is then executed with the target path for some transforma-
tions.

concat The files that match the pattern are concatenated.

bundle This mode concern Java like property files and allows to do some specific merge in the files.

merge This mode concern Java like property files and allows to do some specific merge in the files.

3.7.7 SEE ALSO

ant(1), gprbuild(1), gzip(1), closure(1), yui-compressor(1)

3.7.8 AUTHOR

Written by Stephane Carrez.

Stephane Carrez 16

Advanced Resource Embedder 2024-11-11

4 Rules

The Advanced Resource Embedder provides several mechanisms to integrate files in the gener-
ated code.

An XML file file contains a set of rules which describe how to select the files to include in the generator.
The XML file is read and resource rules introduced by the resource XML element are collected.

The source paths are then scanned and a complete tree of source files is created. Because several
source paths are given, we have several source trees with possibly duplicate files and names in them.

The source paths are matched against the resource rules and each installation rule is filled with the
source files that they match.

The resource installation rules are executed in the order defined in the package.xml file. Each
resource rule can have its own way to make the installation for the set of files that matched the rule
definition. A resource rule can copy the file, another can concatenate the source files, another can
do some transformation on the source files and prepare it before being embedded and used by the
generator.

4.1 Install mode: copy and copy-first

The copy and copy-first mode are the simpler distribution rules that only copy the source file to
the destination. The rule is created by using the following XML definition:

1 <install mode='copy'>
2 <include name="*.txt"/>
3 </install>

If the tool is called with several directories that contain a same file name then the copy installer will
complain because it has two source files for a same destination name. When this happens, you may
instead use the copy-first mode which will take into account only the first file found in the first
directory.

By default the relative path name of the file is used to identify the embedded content. Sometimes, you
may want to drop the file extension and access the content by using only the name of the file without
its extension. This is possible by setting the strip-extension attribute to yes as follows:

1 <install mode='copy' strip-extension='yes'>
2 <install name="*.txt"/>
3 </install>

If the file has the name help.txt, then it is known internally by the name help.

Stephane Carrez 17

Advanced Resource Embedder 2024-11-11

4.2 Install mode: concat

The concatmode provides a distribution rule that concatenates a list of files. The rule is created by
using the following XML definition:

1 <install mode='concat' source-timestamp='yes'>
2 <include name="NOTICE.txt"/>
3 </install>

This rule is useful when the tool is invoked with several directories that contain files with identical
names. Unlike the copy and copy-first rules that take into account only one source file, the
concat mode handles this situation by concatenatating the source files.

By default the generated file has a timestamp which correspond to the time when the are command
is executed. By setting the source-timestamp attribute to true, the generated file is assigned the
timestamp of the newest file in the source files.

4.3 Install mode: exec and copy-exec

The exec and copy-exec mode are the most powerful installation rules since they allow to execute
a command on the source file. The copy-execwill first copy the source file to the destination area
and it will execute the command. The rule is created by using the following XML definition:

1 <install mode='exec' dir='target' source-timestamp='true'>
2 <command slow='false' output='...'>cmd #{src} #{dst}</command>
3 <fileset dir="source">
4 <include name="**/*"/>
5 </fileset>
6 </install>

The command is a string which can contain EL expressions that are evaluated before executing the
command. The command is executed for each source file. The following EL variables are defined:

Name Description

src defines the absolute source path

dst defines the target destination path

name defines the relative source name (ie, the name of the resource file)

Stephane Carrez 18

Advanced Resource Embedder 2024-11-11

4.4 Install mode: bundles

The Are.Installer.Bundles package provides distribution rules to merge a list of bundles to
the distribution area. The rule is created by using the following XML definition:

1 <install mode='bundles' source-timestamp='true'>
2 <fileset dir='bundles'>
3 <include name="**/*.properties"/>
4 </fileset>
5 </install>

4.5 Install mode: webmerge

The webmerge distribution rule is intended to merge Javascript or CSS files which are used by XHTML
presentation files. It requires some help from the developer to describe what files must be merged.
The XHTML file must contain well defined XML comments which are used to identify the merging areas.
The CSS file merge start section begins with:

1 <!-- ARE-MERGE-START link=#{contextPath}/css/target-merge-1.css -->

and the Javascript merge start begings with:

1 <!-- ARE-MERGE-START script=#{contextPath}/js/target-merge-1.js -->

The merge section is terminated by the following XML comment:

1 <!-- ARE-MERGE-END -->

Everything withing these XML comments is then replaced either by a link HTML tag or by a script
HTML tag and a file described either by the link= or script= markers is generated to include every
link or script that was defined within the XML comment markers. For example, with the following
XHTML extract:

1 <!-- ARE-MERGE-START link=#{contextPath}/css/merged.css -->
2 <link media="screen" type="text/css" rel="stylesheet"
3 href="#{contextPath}/css/awa.css"/>
4 <link media="screen" type="text/css" rel="stylesheet"
5 href="#{jquery.uiCssPath}"/>
6 <link media="screen" type="text/css" rel="stylesheet"
7 href="#{jquery.chosenCssPath}"/>
8 <!-- ARE-MERGE-END -->

The generated file css/merged.csswill include awa.css, jquery-ui-1.12.1.css, chosen
.css and the XHTML will be replaced to include css/merge.css only by using the following
XHTML:

Stephane Carrez 19

Advanced Resource Embedder 2024-11-11

1 <link media='screen' type='text/css' rel='stylesheet'
2 href='#{contextPath}/css/merged.css'/>

To use the webmerge, the package.xml description file should contain the following command:

1 <install mode='webmerge' dir='web' source-timestamp='true'>
2 <property name="contextPath"></property>
3 <property name="jquery.path">/js/jquery-3.4.1.js</property>
4 <property name="jquery.uiCssPath">/css/redmond/jquery-ui-1.12.1.css

</property>
5 <property name="jquery.chosenCssPath">/css/jquery-chosen-1.8.7/

chosen.css</property>
6 <property name="jquery.uiPath">/js/jquery-ui-1.12.1</property>
7 <fileset dir="web">
8 <include name="WEB-INF/layouts/*.xhtml"/>
9 </fileset>

10 </install>

The merging areas are identified by the default tags ARE-MERGE-START and ARE-MERGE-END.
These tags can be changed by specifying the expected value in the merge-start and merge-end
attributes in the install XML element. For example, with

1 <install mode='webmerge' dir='web' source-timestamp='true'
2 merge-start='RESOURCE-MERGE-START'
3 merge-end='RESOURCE-MERGE-END'>
4 </install>

the markers becomes:

1 <!-- RESOURCE-MERGE-START link=#{contextPath}/css/target-merge-1.css
-->

2 <!-- RESOURCE-MERGE-END -->

Stephane Carrez 20

Advanced Resource Embedder 2024-11-11

5 Generator

The code generators are invoked when the installer has scanned the directories, selected the files and
applied the installation rules to produce the content that must be embedded.

5.1 Ada Generator

The Ada code generator produces for each resource description an Ada package with the name of that
resource. Sometimes, the Ada package specification is enough and it contains all necessary definitions
including the content of files. In other cases, an Ada package body is also generated and it contains
the generated files with a function that allows to query and retrieve the file content. The Ada code
generator is driven by the resource description and also by the tool options.

The code generator supports several data format to access the file content.

Format Ada type

binary access constant Ada.Streams.Stream_Element_Array

string access constant String

lines array of access constant String

map access constant String

When the --content-only option is used, the code generator uses the following type to describe a
file content in the binary format:

1 type Content_Access is
2 access constant Ada.Streams.Stream_Element_Array;

for the string format it defines:

1 type Content_Access is access constant String;

and for the lines format it defines:

1 type Content_Array is
2 array (Natural range <>) of access constant String;
3 type Content_Access is access constant Content_Array;

These type definitions give access to a readonly binary or string content and provides enough informa-
tion to also indicate the size of that content. Then when the --name-access option is passed, the
code generator declares and implements the following function:

Stephane Carrez 21

Advanced Resource Embedder 2024-11-11

1 function Get_Content (Name : String) return Content_Access;

That function will return either a content access or null if it was not found.

By default, when the --content-only option is not passed, the code generator provides more
information about the embedded content such as the file name, the modification time of the file and
the target file format. In that case, the following Ada record is declared in the Ada specification:

1 type Name_Access is access constant String;
2 type Format_Type is (FILE_RAW, FILE_GZIP);
3 type Content_Type is record
4 Name : Name_Access;
5 Content : Content_Access;
6 Modtime : Interfaces.C.long = 0;
7 Format : Format_Type := FILE_RAW;
8 end record;

The generated Get_Content function will return a Content_Type. You must compare the result
with the Null_Content constant to check if the embedded file was found.

When the --list-access option is passed, the code generator emits a code that gives access to
the list of file names embedded in the resource. The list of names is a simple Ada constant array. The
array is sorted on the name. It is declared as follows:

1 type Name_Array is array (Natural range <>) of Name_Access;
2 Names : constant Name_Array;

The map format is special as it produces a mapping table defined by reading a JSON or XML content.
Files matched by the rules are read and parsed to populate the internal map table. Content of these files
is not available directly but the mapping is queried by using the generated Get_Content function
with the name.

5.2 C Generator

The C code generator produces for each resource description a C header and a C source file with the
name of that resource. The header contains the public declaration and the C source file contains the
generated files with an optional function that allows to query and retrieve the file content. The C code
generator is driven by the resource description and also by the tool options.

The header file declares a C structure that describes the content information. The C structure gives
access to the content, its size, the modification time of the file and the target file format. The structure
name is prefixed by the resource name.

1 struct <resource>_content {

Stephane Carrez 22

Advanced Resource Embedder 2024-11-11

2 const unsigned char* content;
3 size_t size;
4 time_t modtime;
5 int format;
6 }

This type definition gives access to a readonly binary content and provides enough information to
also indicate the size of that content. Then when the --name-access option is passed, the code
generator declares and implements the following function:

1 extern const struct <resource>_content *
2 <resource>_get_content(const char* name);

That function will return either a pointer to the resource description or null if the name was not found.

When the --list-access option is passed, the C code generator also declares two global constant
variables:

1 extern const char* const <resource>_names[];
2 static const int <resource>_names_length = NNN;

The generated array gives access to the list of file names embedded in the resource. That list is sorted
on the name so that a dichotomic search can be used to find an entry.

5.3 Go Generator

The Go code generator produces for each resource description a Go source file with the name of that
resource. The header contains the public declaration and the C source file contains the generated files
with an optional function that allows to query and retrieve the file content. The C code generator is
driven by the resource description and also by the tool options.

The Go source file declares a structure that describes the content information. The structure is declared
public so that it is visible outside the Go package. It gives access to the content, its size, the modification
time of the file and the target file format.

1 type Content struct {
2 Content []byte
3 Size int64
4 Modtime int64
5 Format int
6 }

This type definition gives access to a binary content and provides enough information to also indicate
the size of that content. Then when the --name-access option is passed, the code generator
declares and implements the following function:

Stephane Carrez 23

Advanced Resource Embedder 2024-11-11

1 func Get_content(name string) (*Content)

That function will return either a pointer to the resource description or null if the name was not found.

When the --list-access option is passed, the Go code generator makes available the list of names
by making the Names variable public:

1 var Names= []string {
2 ...
3 }

The generated array gives access to the list of file names embedded in the resource. That list is sorted
on the name so that a dichotomic search can be used to find an entry.

Stephane Carrez 24

	Introduction
	Installation
	Before Building
	Ubuntu 24.04
	FreeBSD 14
	Windows

	Getting the sources
	Using Alire
	Build
	Installation

	Using Advanced Resource Embedder
	Defining resources
	Selecting files
	Integration modes
	Custom headers
	Controlling the lines format
	Other control for the generation
	Man page
	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	RULE DESCRIPTION
	INSTALL MODES
	SEE ALSO
	AUTHOR

	Rules
	Install mode: copy and copy-first
	Install mode: concat
	Install mode: exec and copy-exec
	Install mode: bundles
	Install mode: webmerge

	Generator
	Ada Generator
	C Generator
	Go Generator

